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Per Lu's suggestion, we are starting this document in the hopes that our reading group can result in a tutorial
for Kernel Flow method, based on the 2019 Owhadi-Yoo paper [OY19] and [0S19)], with the background theory
filled in as necessary.
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1 problem formulation

Problem 1:
Given input/output data (x1, y1), ..., (xn, yn) € X x Y. Recover an unknown function v’ mapping X to ) such

as:
uT(x[) =y, viel .,N

The goal of this project is learning a function from a finite number of sampled data points by



2 Reproducing Kernel Hilbert Space

ttp://songcy.net/posts/story-of-basis-and-kernel-part-2/



3 Optimal Recovery
3.1 Setting

(B, - ) be a space of functions that is a Banach space whose norm is given by
Jul? = [0 "u, u],
where Q : B* — B is a bijective mapping from the dual space B* and is
e symmetric: [¢, Q] = [¢, Q¢];

e positive: [¢, Q] = 0,
for ¢, ¢ € B*.

One can not directly compute u’ € B but only with a finite number of features of uf. For this reason, we
introduce the information map ¢ : B — R"™ given by

u— d(u) = ([¢1 ul, ..., [Dm, u])

where {¢;}", < B* are linearly independent set of functions. A solution operator is a possibly nonlinear map
Y : R" — B that uses only the values of the information operator. For any solution operator W and any state
u € B, the relative error corresponding to the recovery problem can be written

_ Ju=¥ @)’
Jull® '

EW, u)

An optimal recovery solution mapping ¥* : R” — B is given by

W*(y) = arg mq‘gn max&(W, u).

ueB

We aim to find an explicit formula for the solution mapping W*(y);

3.2 Projection properties
Note two definitions that will be used throughout the next few pages:

e The inner product in B is given by:

(ur, uz) = [0y, ua). (1)

e The inner product in B* is given by: {¢1, $2)x = [¢1, Q2]

Moreover, observe that above definitions can be combined and we verify that:
(O¢1, u2) = [07'(0¢1), u2]
= [ u2]

Let us denote the finite set of linearly independent functions by {¢1, ..., ¢n} < B* and its span by L. We
define the Gram matrix by

(2)

0y =1[¢. 0], ij=1,....m,



and the elements ¢; € B by

Proposition 3.1. The collection {¢;, ; | i,j=1,..., m} defined in (3) is a biorthogonal system, Le,

[po gl =0y, Lj=1..., m.
Moreover, the operator P : B — B, defined by

is the {-,->— orthogonal projection onto QL. P* : B* — B*, defined by
Pp = > lp, 0610~ "
i=1

is the (-, -)x—orthogonal projection on L. In addition, P* is the adjoint of P in the sense that

[o. PY] =[P . y], @eB* yeB

and we have
*= 07 'PO.

Proof. (I) The biorthogonality of the collection follows straightforwardly. First note that from Equation (1) the
following holds

(O, Q¢/> ~'(0¢1), 0¢]]
Q 1 )

@:—\r—\
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So, using above result Equation (5) and the symmetry of the duality product, the biorthogonality follows as

[0, ] = {OQ¢:, )
= Q¢ (21(971 )/ZQ¢1)>
(=1
=>(07),K0¢:, O
(=1
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(I Note that for each i =1, ..., m, y; € QL. Consequently, the range of the P lies inside QL as well. Now
let us fix [ and consider ¢y = Q¢;. Since

m

Py = PO = > [¢1, il

i=1

= 2@11(2 ikQ¢k)
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we obtain that Py = (. Since Q¢; € QL for each [ =1, ..., m, it follows that Py = ¢ for ¢ € QL. Now
suppose that ¢ is orthogonal to QL:

0={0¢1¢)=[dry] Vi=1,... m
Then it follows that Py = 0 for all ¢ orthogonal to QL, establishing the second assertion.

(Il) We use previous observation that P and P* are orthogonal projectors on QL and L, respectively. First
consider ¢ € £ and ¢y € QL. Consequently,

(@, PY] = [o, ¢]
= [P*o, ¢].

Other cases involve when the functions are in the orthogonal complement of £ and QL. So, for instance for
@ € L the relation is trivially satisfied since (¢, ¢y = 0.

(IV) Fix ¢ € B* and consider

OP*¢ = PO =
= 0( X9, 06107 ") = Y[e1. Ol
i=1 (=1
= (¢ 0eilts — Dl[d1, 0l
i=1 i=1
=0,
which follows from the symmetry of the duality [-, -] product. O

Theorem 3.2. We have QL = span{y; | i=1,..., m}. Furthermore, the mapping v : B — B

m

v(u) = Y[, ul

i=1
is the orthogonal projection of B onto QL and therefore has the variational formulation

2 : 2
- = inf — ) e B,
Ju= V(o) = nf vyl

in other words,

v(u) = argmin|u — ¢1H2
YeQL



Proof. It follows from Proposition 3] that the ¢; are the components of the projection operator (@), the orthogonal
projection onto QL. Since QL is a closed linear subspace of 3, we can apply the classical projection theorerrﬂ
establishing that v(u) = Pu and the assertion follows. O

Theorem 3.3. let ;e B, i=1,..., m be defined as in Equation (3). The mapping W* : R™ — B, defined by

W*(y) = >y, yeR", (6)
i=1
is an optimal minmax solution to
— Yo 2
ot sup 10 = ¥ 00D
Y ueB HUH

Proof. Consider for a general solution such that

W 2
() = sup = V@I
veB lu]
Then choose u* € ker ®, and u, = Au with A > 0:

JAu* — W' (b (u))]*

o > v(V) = sup

2>0 [[Au*||?
|Au* —W(0)]
=sup —————5——
o e

Recall that W’ attains the infimum and v(¥’) is finite, so it implies /(0) = 0. Consequently,

AU 2
v(V') = sup H U*HZ =
>0 [Au*]

so we conclude
v(W) =1,V R" - B. (7)

On the other hand, consider the solution given by Equation (6). By Proposition 31] the expression of Equation
() is the orthogonal projection onto QL. Writing its action as Pogu = W(®(u)), observe that
Ju = Y@@ _  Iu=Pocul?
ueB Jul? wes  [ul?
<1

So, the optimalitity of Y* follows from Equation (7). O

3.3 \Variational Properties
The projection coordinates ; defined in Equation (3) can also be characterized via their variational properties.
Theorem 3.4. 1. For y e R", 3" |y is the minimizer of

min |||

4 o (8)
subject to e Band [¢, ] =y, j=1..., m.

2 Fori=1,..., m, ; is the minimizer of
min ¢
subject to e B and [¢;, Y] =0y, j=1,..., m.

"The relationship between orthogonal projection and norm minimization is the classical projection theorem, see, [[ue97]: let V < B be
a closed linear subspace and let Py : B — B denote the orthogonal projection onto V.




Proof. 1. Take /" = 3", yul; € B. Note that the biorthogonality in Proposition [3.1|implies that /' is feasible.
In fact,

(¢, 4] = 01, Y1)
=2, K00 )
j=1
= >yl ]
j=1
= yi,

Pick another feasible function s € B. )t = Py so from Proposition YT is the orthogonal projector of ¢
onto QL. Consequently, ¢y — ¢/ is orthogonal to /T and

[l? = 1717 + o — ¢

So, ¢ is the minimizer.
2. [



4 Kernel Flows algorithm:

As seen in the previous section, the optimal recovery of the problem [T has the explicit form:

N
V=) A 0¢, (9)

i,j=1
Where A =01

This form relies on the prior specification of a norm of the hilbert space B or equivalenty of a kernel K. In the
following, we present the characteristic of a good kernel.

4.1 What is a good kernel

The method of Kernel flow is based in the premise that a kernel is good if there is no significant loss in accuracy
in the prediction error if the number of data points is halved. This led to the introduction of the following loss
function:

_ V=

ST .

Where |.| is the norm associated to the RKHS B. v* is the optimal recovery open seeing half of the points.

In other words, a kernel is good when v* is close v (measured using the RKHS norm). In this case, p has a
small value (close to zero).

By denoting {s(1),...,s(m)} a selection of the m distinct elements of {1,..., N} (m=round(N/2)), v* is the
optimal recovery of ut such as (uT(xs1)) = ys1)), - (UT(Xs(m)) = Ys(m))- Then, the explicit form of v* is:

v = 54,09, (11)
ij=1

Where T, =y, Aj = Asoys() and ¢; = ¢s(;)

One can denote s the m x N sub-sampling matrix defined by 71;; = d(;);, and then observe that:

With A = 77 Az and A = (7077)~".
Now, we aim to find an alternative formula for the loss function [T0]
Theorem 4.1. It holds true that:

p=1— zif\z and p € [0,1].

Before proving this theorem, let us prove the following proposition:
Proposition 4.2. For vl and v* defined as inlg C/nd we have:
IvF = v 2 = 4T Ay — ¢ Ay



Proof. (I) One can show that |[vf[? = y" Ay and |v*||? = 7' Ag = y" Ay. In fact:

[viIF = [0~ V]

N N
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In the same way, we can show the second equality.

(Il) The orthogonal decomposition |[vT||> = [v*[? + |[vI — v*|? is obtained using the orthogonal projection on a
convex closed theorem. Let recall this theorem:

Theorem 4.3. Let consider H a hilbert space and C a convex closed subset of H. It holds true that:
Vx e H,3m e C such as: d(x, C) = infec |x — 2| = ||x — m|.

Moreover, we have < x —m,y —m ><0,Vy € C.

Now, we apply this theorem to show that < v*, v — v* >=0:
Let us denote C = {W € B, st: W(x)) = yspy, i €{1,...,m}}.
C is a convex closed subset of B. Take x = 0 € B.
It follows that: 3!m € C such as: inf,ec 2] = ||m|.

Since v* is the minimizer of subject to the constraints W(xs(;)) = ys(;). Thus m = v* and we obtain that:

<—=v,y—v*><0,VyeC

Moreover, vi € C implies < —v*, Vi v ><0
And —vT +2v* € C implies < —v*, —v +v* >< 0

So, we conclude that: < v*,vi —v* >=0

Then, theorem [A1] follows simply from the proposition

10



4.2 The Fréchet derivative of p:
Let us fix y and 7, then p can be seen as a function of A or more equivalently of © since A = 07",

As seen in the previous section, the smaller the rho, the better is a kernel. Consequently, Kernel Flow method
search for the optimal parameters of the kernel that minimize the loss function. In the following proposition, we
compute the Fréchet derivative of p with respect to small perturbations of A or of 7.

Proposition 4.4. 1. Write z = A=Ay with A = 7" (xA="n") =" defined as above. It holds true that:
(1—p(A)y'Sy—2"Sz
y' Ay

p(A+€S)=p(A) +¢ + O(€?)

2 And writing § = 07y and 2 = " (7O ") 7ry:

1—p@)y Ty —-2"T2
e( ( 9)29_19 +(9(62)

PO+ €T) = p(©) —

Proof. Let show the first point: Using the formula of p [£.7] observe that:

y' 7' [w(A+eS) " 'n' " "ny
y"(A+eS)y

p(A+€eS)=1—

Recall the approximation of the derivate of inverse matrix: (A + €S)™' = A~ — eA"1SA™! + O(€?). Then:

aA xl — e AT SAT Ty
y"(A+eS)y

p(A+eS)=1— y'n'| +O()

Using the same approximation for:
(A " — ex AT SAT AT = [#AT AT 4 €A A T AAT I SAT A (AT AT
. It follows that:

gA N ry + ey AT [AAT AT )T AATVSAT R Ty T AT (AT T T y

TT
y [

A S)=1-
pA+€S) yT(A+eS)y

y'Ay + ez" Sz
y"(A+ €Sy

y'Ay + ez’ Sz
~ yTAy + ey’ Sy

Recall the approximation ———e = —L— — e 4% O(€?). Then:
PP yTAy+ey"Sy = yTAy (y7Ay)* ' ‘

1 . y'Sy
yrAy (yTAy)?

1— p(ANy'Sy — z"Sz
( p();%Ayy L o)

p(A+€S)=1—(y"Ay + ez Sz)( + O(e?))

=p(A)+ ¢

The proof of the second point is identical. O

4.3 The gradient of p with respect to hyper-parameters of the kernel:

Let K(x,x", W) be a family of kernels parametrized by W = (W, ..., W) € W, where [ is the number of
parameters.

In kernel flow algorithm, we seek to find the parameters of the kernel that minimize the loss function p. In
a practical manner, starting with initial values of the parameters W,we evolve W using stochastic gradient

descent:
We— W — 6va(W)

11



Where Vyp(W) = (Ow,p(W), ..., owp(W))T

Let us compute analytically the expression of oy, p(W) for i e {1, ..., [}:
Corollary:

Write © = O(W), § = © 'y and 2 = 7" (70 7)~"ry. It holds true that:

(1= pW))G" (OwOW)§ — 2T (dwO(W))2

W) = —
am//p( ) gTe_1g

Proof. Recall the approximation: @(W + eW') = O(W) + e(W') TV O(W) + O(€?). Then:
POV + W) = p(B(W) + (W) Ty B(W)) + O(e)
=p(®+€T) +0O()
Where T = (W), 0(W)
Proposition [4.4] implies that:

p(W + eW') = p(W) — e

This equation is valid for all W' e W, let set ie {1,..., [}, we choose W' = (0,...,0,1,0,...,0)7, where the
coefficient 1 is in index i. It follows that: T = oy, ©O(W).

Which proves the result.

12



5 Revisiting the interpolation problem from a signal model perspective

The goal of this project is learning a function from a finite number of sampled data points. Learning such a
function is an ill-posed problem in the sense that a small error in sampled data may result in a large error in
the resulting function. Because sampled data inevitably contain noise, the ill-posedness of these problems is
unavoidable. Minimum norm interpolation and the reqularization method are effective approaches to treat the

ill-posedness.

5.1 Regression problem

For a single output system, the continuous time signal model can be written as

y="~F(x)+e (13)
For a d-dimensional system, we measure n snapshots of the state variable at time points {t1, t, -, t,}, then
we have the following measurement matrix:
xT(tr) xi(t) x(t) - xg(th)
‘ ‘ ‘ XT(tz) x1(t) x(t) - x4(t2)
X={x x - xq|= : = . . 4
T(tn) X1 (tn) XZ(tn) Xd(tn)
Frequency method: linear regression and kernel regression
Bayesian method: Bayesian linear regression and Gaussian process regression
5.2 Linear regression
For the signal Y = (y(t1), y(t2), -, y(t,)) " to be linear in the unknown parameters, we assume
f(x) =0Tx
Substituting the time points in to the equation and arrange it in to a matrix notation,
Y=X0+¢
where 8 € R9*" is the unknown parameters, € is the model error.
By using empirical risk minimization criterion, we can obtain the least square estimation:
6=X"X)""xTy (14)

5.3 Geometrical interpretations

If we denote the columns of X by x;, we have

6

6 d
fx)=1[x x - x : :ZQiXi

: i=

B4

so that the signal model is seen to be a linear combination of the "signal’ vectors [x1 X2

Then, the LS error can be written as

d
LO) =Y =), 0]’
i=1

13
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We now see that the linear regression attempts to minimize the square of the distance from the data vector Y
to the a signal vector 27:1 0:x;, which is a linear combination of the columns of X. The data vector can lie
anywhere in an N—dimensional space, termed R", while all possible signal vectors, being linear combinations
of d < N vectors, must lie in a d-dimensional subspace of R", termed X¢. For example, N = 3 and p = 2
we illustrate this in Figure [T} Note that all possible choices 64, 6, produce signal vectors constrained to lie
in the subspace X? and that in general Y does not lie in the subspace. It should be intuitively clear that the
vector X that lies in X2 and that is closest to Y in the in the Euclidean sense is the component of Y in X?.
Alternatively, % is the orthogonal projection of Y onto X?. This means that the error € = ¥ — & is orthogonal
to the signal space.

Hh

geometric.pd

Figure 1: Geometrical viewpoint of linear regression in R>

In summary, the linear regression can be interpreted as the problem of fitting or approximating a data vector
Y in RN by another vector %, which is linear combination of vectors (xq, x, - -+, x4). The problem is solved by
choosing X in the subspace to be the orthogonal projection of Y.

5.4 Kernel linear regression
y=¢(x) 0+ (15)
where ¢ is a feature map: R? — R"™ with m > d.

The objective function can be written as
L(6) = [®6 —V|?

where & = (¢(x1), p(x2), -, d(xg)) | € R,
Calculating the derivative the objective function and set to be zero gives the optimal solution

0=(@"d) Ty (16)

Lemma 5.1. (®T®)~'dT = dT(dPT)=" This is can be shown by using the singular value decomposition.

let x* be a test data,in the light of Lemma [5.7] the optimal prediction can be obtained
f(x") = ¢(x*) T8 = p(x)TeT (@0 T) 7TV (17)

Note that [dPT];; = ¢(x(1:) T p(x(t)) == K(x(t:), x(t;)), and [(x*)TOT]; = d(x*) T p(x(t))) == K(x*, x(t))).
Therefore, the equation m can be written as

f(x*) = K(x*, X)k(X, X)~'Y (18)

Representer theorem: In statistical learning theory, a representer theorem is any of several related results
stating that a minimizer f* of a reqularized empirical risk functional defined over a reproducing kernel Hilbert
space can be represented as a finite linear combination of kernel products evaluated on the input points in the
training set data.

Theorem 5.2. Consider a positive-definite real-valued kernel K : X x X — R on a non-empty set X with a
corresponding reproducing kernel Hilbert space Hy. The approximation f in the kernelized form can be express
as

f(x) = > K (x(t;), x) (19)
j=1

Representer theorem can dramatically reduce an infinite dimensional problem to a dimensional one whose
solution can be obtained by solving either a linear system or a finite dimensional optimization problem.

14



5.5 Bayesian linear regression

From Bayesian perspective, we assume that 6 is a random variable whose particular realization we must

estimate. Consider linear model
f(x)=0Tx

y="~F(x)+e
e~ (0,09
Build the Bayesian model:
Introduce Gaussian prior p(6) = N(0,X,), then the posterior p(6|Data) can be obtained by

Cp(0.Y1X) p(YI6.X)p(01X)
PEOXY) =20 = (V18 X)p(e1X)d8

Note that denominator is dependent with the parameter and p(6|X) = p(8), therefore,
N
p(OIX, V)xp(Y16, X)p(6) = [ [ p(¥ (1) Ix(t), 6) - (0, Z,)

According to the signal model, we have p(Y(t,)|x(t;), 8) = N (6T x(t;), a%), we have

N
p(OIX, V)oc [ [N(87x(1:), 0%) - N'(0, L)

i=1

Therefore, the problem becomes

N
p(6]Data) ~ N (e, Zo)or [ [N(07 x(1:), 0°) - N (0, L) (20)

i=1
Inference:

First, calculate the likelihood

N N

[TV @ x(t), %) = (27T)1N/202€Xp (—ZLZ Diy(t) - QTX(&)V)

i=1 i=1

‘

ST —TXT)(Y - X@))

1
e <_

1 T TyTy\—2

- N

Substituting the result into equation (20) and after a simple manipulation, we have
1 1
p(6|Data)oc exp (—Z(YT —0TXNo™2I(Y — X0) — 29T2;19)

= exp (—;UZ(YTY —2YTX0+0TXTX0) - %QTZf 9)

Recall a exponential part of a pdf p(x) ~ N (i, L) is

exp <;(x — T (x = y)) = exp <;(XTZ1X —2uT I X + C)>

15



Comparing the two function gives the quadratic and first terms, respectively
X'E =070 XTX0+6"5,'6 =0T (a’X" X +L,1)6 (1)
where A 1= 251 =’ XTX + Zp’w.
pTrx =072YTX6 (22)
which means p) I, = 072V X = pg = 0 2A7XTY.
Prediction:

Given a x*, the predicted result is
F(x*) = x*T0 ~ N (x* T g, x* TLox*)
Recall Y = f(x) + ¢, so we have the final prediction

p(Y*|Data,x*) ~ N (x*Tug, x*TLox* + 0°1) (23)

5.6 Gaussian process regression
Weight space view

Recall that the linear scenario p(f(x)|Data, x*) ~ N (x*To=2A=TXTY,x*TA=1x*). If we define a nonlinear
feature mapping like equation (T5), so the pdf is

p(f(x")|Data, x*) ~ N(¢(x*) T o2 A7 0(X) TV, ¢(x*) TA™ ¢ (x*)) (24)

By using Woodbury Matrix Identity
(Anxcn + Unsk Cexk Vin) ™ = A= ATTU(CT + VATTU) T VAT
equation (24) can be manipulated as

p(F(*)Data, x*) ~ N (9(x*) 'L, (P, 0T +021) 7", (") T, 0(x*) —$(x*) TE, 0T (B, 0T +0°1) 7 &L, p(x*))

1
Because I, is a symmetric positive definite matrix, let £, = (£7)?, then we can get

K(x,x') = o()TE 5 ()
— (L 6()T - $(E; (25)
=< g(x, p(x)) >

which is also called 'kernel trick’ Finally, the posterior is

p(f(x*)|Data, x*) ~ N (K(x*, X)(K(X, X)+ 0’7"V, K(X, X) = K(x*, X)(K(X, X)+*)T'K(X, x*)) (26)

How to link to Gaussian process?

For a sequence of random variables {X;},.;, where T is a continuous domain. If and only if for every finite set
of indices t1,-- -, t¢ in the index set T, X, ..., is a multivariate Gaussian random variable, then {X;},.; is a
Gaussian process.

Given a prior p(6) ~ N'(0, X)), the expectation of f(x) is

16



For Vx,x' € RY,

Obviously, the covariance of f(x) is a kernel function.
Function space view

In this regression problem, f(x) is a Gaussian process.

{f()}here ~ GP(m(x), K(x. X))

(27)
m(x) = E[f()], K(x,x') = E[(F(x) = m())(F(x') = m(x))"]
The regression problem is y = f(x) + € ~ N (u(X), K(X, X) + o?/)
Given a new data: X* = (x{', x5, -+, x§)nxa, the adjoint probability density is
Y N p(x) K(X,X)+ 0%l K(X,X*)
f(x*) x| KX, X) K(X*, X*)
Next we calculate p(f(X*)|Y, X, X*), te p(f(X*)|Y), a conditional PDF. Recall that the equation
Y= Xa| Ha Zaa ZUb
Xp o | [Zba  Lob
Xb|Xa ~ N(:ub|ar Zb\a)
Hpla = ZbaZ;(J (XU - /Ja) + Up
Thjo = Zob — LhaLgg Lab
using this equation gives the result
PUCNY) = MK XK X) + 027 (Y = (X)) + (X, -

K (X, X) = K(X*, X)(K(X, X) + a?)TTK(X, X*))

Add noise
p(F(XM)Y) = N (K", X)(K(X, X) + o)1 (Y = u(X)) + p(X),
K (X, X) = K(X*, X)(K(X, X) + a?)T'K(X, X*) + 0?)

In concluston, in the GPR method,

1. From the weight space perspective, the prediction is
ply’[Data ) = [ ply"lx*, €)p(6)d6
2. From the function space perspective, the prediction is

py’[Data, ) = [ ply" ", F)p(F () ()

17
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Figure 2: Relationship between the four methods
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