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Per Lu’s suggestion, we are starting this document in the hopes that our reading group can result in a tutorialfor Kernel Flow method, based on the 2019 Owhadi-Yoo paper [OY19] and [OS19], with the background theoryfilled in as necessary.
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1 problem formulation
Problem 1:Given input/output data px1, y1q, ..., pxN , yNq P X ˆ Y. Recover an unknown function u: mapping X to Y suchas:

u:pxiq “ yi,@i P 1, ..., N
The goal of this project is learning a function from a finite number of sampled data points by
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2 Reproducing Kernel Hilbert Space
ttp://songcy.net/posts/story-of-basis-and-kernel-part-2/
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3 Optimal Recovery
3.1 Setting
pB , } ¨ }q be a space of functions that is a Banach space whose norm is given by

}u}2 :“ rQ´1u, us,

where Q : B ˚ Ñ B is a bijective mapping from the dual space B ˚ and is• symmetric: rφ,Qφs “ rφ,Qφs;• positive: rφ,Qφs ě 0,for φ, φ P B ˚.[Zheng] (i) need linear space Y so that the space B of functions u : X Ñ Y can have linear structure. (ii) does
Q need to be a linear isomorphism, i.e., continuous, linear with a continuous linear inverse? L2 is isomorphicto its dual and so admits such a Q, false for general Banach space, but for general Hilbert space? (iii) given
B , is it easy to construct such a Q?One can not directly compute u: P B but only with a finite number of features of u:. For this reason, weintroduce the information map Φ : B Ñ Rm given by

u ÞÑ Φpuq “
`

rφ1, us, . . . , rφm, us
˘

,

where tφiumi“1 Ă B ˚ are linearly independent set of functions. A solution operator is a possibly nonlinear mapΨ : Rm Ñ B that uses only the values of the information operator. For any solution operator Ψ and any state
u P B , the relative error corresponding to the recovery problem can be written

E pΨ, uq “
}u´ ΨpΦpuqq}2

}u}2 .

An optimal recovery solution mapping Ψ˚ : Rm Ñ B is given by
Ψ˚pyq “ arg minΨ max

uPB
E pΨ, uq.

[Zheng] Intuitive interpretation: maxuPB E pΨ, uq gives the worst possible scenario for each given Ψ, then min-imizing over all possible Ψ yields the best option Ψ˚. This is similar to the distance from compact set A tocompact set B given by distpA, Bq :“ minaPA maxbPB distpa, bq.We aim to find an explicit formula for the solution mapping Ψ˚pyq;
3.2 Projection propertiesNote two definitions that will be used throughout the next few pages:• The inner product in B is given by:

xu1, u2y “ rQ´1u1, u2s. (1)
• The inner product in B ˚ is given by: xφ1, φ2y˚ “ rφ1, Qφ2s;Moreover, observe that above definitions can be combined and we verify that:

xQφ1, u2y “ rQ´1pQφ1q, u2s

“ rφ1, u2s.
(2)

Let us denote the finite set of linearly independent functions by tφ1, . . . , φmu Ă B ˚ and its span by L. Wedefine the Gram matrix by
Θij “ rφi, Qφj s, i, j “ 1, . . . , m,
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and the elements ψi P B by
ψi “

m
ÿ

j“1pΘ´1
qijQφj , i “ 1, . . . , m, (3)

where pΘ´1
qij denote the components of the inverse matrix Θ´1.[Lu] pΘ´1qij

Proposition 3.1. The collection tφi, ψj | i, j “ 1, . . . , mu defined in (3) is a biorthogonal system, i.e.,

rφi, ψj s “ δij , i, j “ 1, . . . , m.
Moreover, the operator P : B Ñ B, defined by

Pu “

m
ÿ

i“1rφi, usψi (4)
is the x¨, ¨y´ orthogonal projection onto QL. P˚ : B ˚ Ñ B ˚, defined by

P˚φ “

m
ÿ

i“1rφ,QφisQ
´1ψi

is the x¨, ¨y˚´orthogonal projection on L. In addition, P˚ is the adjoint of P in the sense that

rφ, Pψs “ rP˚φ, ψs, φ P B˚, ψ P B

and we have

P˚ “ Q´1PQ.
Proof. (I) The biorthogonality of the collection follows straightforwardly. First note that from Equation (1) thefollowing holds

xQφi, Qφjy “ rQ´1pQφiq, Qφj s
“ rφi, Qφj s
“ Θij .

(5)
So, using above result Equation (5) and the symmetry of the duality product, the biorthogonality follows as

rφi, ψj s “ xQφi, ψjy

“ xQφi,
´

m
ÿ

l“1pΘ´1
qjlQφl

¯

y

“

m
ÿ

l“1pΘ´1
qjlxQφi, Qφly

“

m
ÿ

l“1pΘ´1
qjlΘli

“
`Θ´1Θ˘

ji

“ δji
“ δij .
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(II) Note that for each i “ 1, . . . , m, ψi P QL. Consequently, the range of the P lies inside QL as well. Nowlet us fix l and consider ψ “ Qφl. Since
Pψ “ PQφl “

m
ÿ

i“1rφi, Qφlsψi
“

m
ÿ

i“1 Θil

´

m
ÿ

k“1pΘ´1
qikQφk

¯

“

m
ÿ

i,k“1 ΘilpΘ´1
qikQφk

“

m
ÿ

k“1
´

m
ÿ

i“1 ΘlipΘ´1
qik

¯

Qφk

“

m
ÿ

k“1
`ΘΘ´1˘

lkQφk

“ Qφl
“ ψ,we obtain that Pψ “ ψ . Since Qφl P QL for each l “ 1, . . . , m, it follows that Pψ “ ψ for ψ P QL. Nowsuppose that ψ is orthogonal to QL:0 “ xQφl, ψy “ rφl, ψs @l “ 1, . . . , m.Then it follows that Pψ “ 0 for all ψ orthogonal to QL, establishing the second assertion.(III) We use previous observation that P and P˚ are orthogonal projectors on QL and L, respectively. Firstconsider φ P L and ψ P QL. Consequently,

rφ, Pψs “ rφ, ψs

“ rP˚φ, ψs.Other cases involve when the functions are in the orthogonal complement of L and QL. So, for instance for
φ P LK the relation is trivially satisfied since xφ, φly˚ “ 0.(IV) Fix φ P B ˚ and consider

QP˚φ ´ PQφ “

“ Q
´

m
ÿ

i“1rφ,QφisQ
´1ψi¯ ´

m
ÿ

l“1rφl, Qφsψl

“

m
ÿ

i“1rφ,Qφisψi ´

m
ÿ

i“1rφl, Qφsψl

“ 0,which follows from the symmetry of the duality r¨, ¨s product.
Theorem 3.2. We have QL “ spantψi | i “ 1, . . . , mu. Furthermore, the mapping v : B Ñ B

vpuq “

m
ÿ

i“1rφi, usψi

is the orthogonal projection of B onto QL and therefore has the variational formulation

}u´ vpuq}2 “ inf
ψPQL

}u´ ψ}2, u P B ,

in other words,

vpuq “ arg min
ψPQL

}u´ ψ}2.
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Proof. It follows from Proposition 3.1 that the ψi are the components of the projection operator (4), the orthogonalprojection onto QL. Since QL is a closed linear subspace of B , we can apply the classical projection theorem1,establishing that vpuq “ Pu and the assertion follows.
Theorem 3.3. Let ψi P B , i “ 1, . . . , m be defined as in Equation (3). The mapping Ψ˚ : Rm Ñ B , defined by

Ψ˚pyq “

m
ÿ

i“1yiψi, y P Rm, (6)
is an optimal minmax solution to

infΨ sup
uPB

}u´ ΨpΦpuqq}2
}u}2 .

Proof. Consider for a general solution such that
vpΨ1q “ sup

uPB

}u ´ Ψ1pΦpuqq}2
}u}2 ă 8.

Then choose u˚ P ker Φ, and uλ “ λu with λ ą 0:
8 ą vpΨ1q ě sup

λą0
}λu˚ ´ Ψ1pΦpu˚qq}2

}λu˚}2
“ sup

λą0
}λu˚ ´ Ψ1p0q}2

}λu˚}2 .

Recall that Ψ1 attains the infimum and vpΨ1q is finite, so it implies Ψ1p0q “ 0. Consequently,
vpΨ1q ě sup

λą0
}λu˚}2
}λu˚}2 “ 1

so we conclude
vpΨ1q ě 1,Ψ1 : Rm Ñ B . (7)On the other hand, consider the solution given by Equation (6). By Proposition 3.1 the expression of Equation(6) is the orthogonal projection onto QL. Writing its action as PQLu “ ΨpΦpuqq, observe that

sup
uPB

}u´ ΨpΦpuqq}2
}u}2 “ sup

uPB

}u´ PQLu}2
}u}2

ď 1.So, the optimalitity of Ψ˚ follows from Equation (7).
3.3 Variational PropertiesThe projection coordinates ψi defined in Equation (3) can also be characterized via their variational properties.
Theorem 3.4. 1. For y P Rm,

řm
i“1 yiψi is the minimizer of

min }ψ}subject to ψ P B and rφi, ψs “ yj , j “ 1, . . . , m. (8)
2. For i “ 1, . . . , m, ψi is the minimizer ofmin }ψ}subject to ψ P B and rφj , ψs “ δij , j “ 1, . . . , m.

1The relationship between orthogonal projection and norm minimization is the classical projection theorem, see, [Lue97]: let V Ă B bea closed linear subspace and let PV : B Ñ B denote the orthogonal projection onto V .
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Proof. 1. Take ψ: “
řm
i“1 yiψi P B . Note that the biorthogonality in Proposition 3.1 implies that ψ: is feasible.In fact,

rφi, ψ:s “ xQφi, ψ:y

“

m
ÿ

j“1yjxQφi, ψjy
“

m
ÿ

j“1yj rφi, ψj s
“ yi.

Pick another feasible function ψ P B . ψ: “ Pψ so from Proposition 3.1 ψ: is the orthogonal projector of ψonto QL. Consequently, ψ ´ ψ: is orthogonal to ψ: and
}ψ}2 “ }ψ:}2 ` }ψ ´ ψ:}2.

So, ψ: is the minimizer.2.
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4 Kernel Flows algorithm:
As seen in the previous section, the optimal recovery of the problem 1 has the explicit form:

v: “

N
ÿ

i,j“1yiAijQφj (9)
Where A “ Θ´1.This form relies on the prior specification of a norm of the hilbert space B or equivalenty of a kernel K . In thefollowing, we present the characteristic of a good kernel.
4.1 What is a good kernelThe method of Kernel flow is based in the premise that a kernel is good if there is no significant loss in accuracyin the prediction error if the number of data points is halved. This led to the introduction of the following lossfunction:

ρ “
}v: ´ v‹}2

}v:}2 (10)
Where }.} is the norm associated to the RKHS B . v‹ is the optimal recovery open seeing half of the points.In other words, a kernel is good when v‹ is close v: (measured using the RKHS norm). In this case, ρ has asmall value (close to zero).By denoting tsp1q, ..., spmqu a selection of the m distinct elements of t1, ..., Nu (m=round(N/2)), v‹ is theoptimal recovery of u: such as pu:pxsp1qq “ ysp1qq, ..., pu:pxspmqq “ yspmqq. Then, the explicit form of v‹ is:

v‹ “

m
ÿ

i,j“1yiAijQφj (11)
Where yi “ yspiq, Aij “ Aspiqspjq and φj “ φspjq

One can denote π the mˆN sub-sampling matrix defined by πij “ δspiqj , and then observe that:
v‹ “

N
ÿ

i,j“1yiÃijQφjWith Ã “ πTAπ and A “ pπΘπT q´1.Now, we aim to find an alternative formula for the loss function 10.
Theorem 4.1. It holds true that:

ρ “ 1 ´
yT Ãy
yTAy and ρ P r0, 1s.

Before proving this theorem, let us prove the following proposition:
Proposition 4.2. For v: and v‹ defined as in 9 and 11, we have:

}v: ´ v‹}2 “ yTAy´ yT Ãy
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Proof. (I) One can show that }v:}2 “ yTAy and }v‹}2 “ yTAy “ yT Ãy. In fact:
}v:}2 “ rQ´1v:, v:s

“ rQ´1 N
ÿ

i,j“1yiAijQφj ,
N

ÿ

i,j“1yiAijQφj s

“ r

N
ÿ

i,j“1yiAijφj ,
N

ÿ

k,l“1ykAklQφls

“

N
ÿ

i,j“1
N

ÿ

k,l“1yiAijykAklrφj , Qφls

“

N
ÿ

i,j“1
N

ÿ

k,l“1yiAijykAklΘjl

“

N
ÿ

i,j“1
N

ÿ

k“1yiAijyk
N

ÿ

l“1AklΘlj

“

N
ÿ

i,j“1
N

ÿ

k“1yiAijykpAΘqkj

“

N
ÿ

i

N
ÿ

k“1yipAAΘqikyk

“ yTAy

In the same way, we can show the second equality.(II) The orthogonal decomposition }v:}2 “ }v‹}2 ` }v: ´ v‹}2 is obtained using the orthogonal projection on aconvex closed theorem. Let recall this theorem:
Theorem 4.3. Let consider H a hilbert space and C a convex closed subset of H. It holds true that:

@x P H, D!m P C such as: dpx, Cq “ infzPC }x ´ z} “ }x ´m}.

Moreover, we have ă x ´m, y´m ąď 0,@y P C .

Now, we apply this theorem to show that ă v‹, v: ´ v‹ ą“ 0:Let us denote C “ tΨ P B , st : Ψpxspiqq “ yspiq, i P t1, .., muu.
C is a convex closed subset of B . Take x “ 0 P B .It follows that: D!m P C such as: infzPC }z} “ }m}.Since v‹ is the minimizer of 8 subject to the constraints Ψpxspiqq “ yspiq. Thus m “ v‹ and we obtain that:

ă ´v‹, y´ v‹ ąď 0,@y P C

Moreover, v: P C implies ă ´v‹, v: ´ v‹ ąď 0And ´v: ` 2v‹ P C implies ă ´v‹,´v: ` v‹ ąď 0So, we conclude that: ă v‹, v: ´ v‹ ą“ 0
Then, theorem 4.1 follows simply from the proposition
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4.2 The Fréchet derivative of ρ:Let us fix y and π , then ρ can be seen as a function of A or more equivalently of Θ since A “ Θ´1.As seen in the previous section, the smaller the rho, the better is a kernel. Consequently, Kernel Flow methodsearch for the optimal parameters of the kernel that minimize the loss function. In the following proposition, wecompute the Fréchet derivative of ρ with respect to small perturbations of A or of Θ´1.
Proposition 4.4. 1. Write z “ A´1Ãy with Ã “ πT pπA´1πT q´1π defined as above. It holds true that:

ρpA ` εSq “ ρpAq ` ε p1 ´ ρpAqqyTSy´ zTSz
yTAy ` Opε2q

2. And writing ŷ “ Θ´1y and ẑ “ πT pπΘπT q´1πy:

ρpΘ ` εT q “ ρpΘq ´ ε p1 ´ ρpΘqqŷTT ŷ´ ẑTT ẑ
ŷTΘ´1ŷ ` Opε2q

Proof. Let show the first point: Using the formula of ρ 4.1, observe that:
ρpA ` εSq “ 1 ´

yTπT rπpA ` εSq´1πT s´1πy
yT pA ` εSqyRecall the approximation of the derivate of inverse matrix: pA ` εSq´1 “ A´1 ´ εA´1SA´1 ` Opε2q. Then:

ρpA ` εSq “ 1 ´
yTπT rπA´1πT ´ επA´1SA´1πT s´1πy

yT pA ` εSqy ` Opε2q

Using the same approximation for:
rπA´1πT ´ επA´1SA´1πT s´1 “ rπA´1πT s´1 ` εrπA´1πT s´1πA´1SA´1πT rπA´1πT s´1

. It follows that:
ρpA ` εSq “ 1 ´

yTπT rπA´1πT s´1πy ` εyTπT rπA´1πT s´1πA´1SA´1πTyTπT rπA´1πT s´1πy
yT pA ` εSqy

“ 1 ´
yT Ãy ` εzTSz
yT pA ` εSqy

“ 1 ´
yT Ãy` εzTSz
yTAy` εyTSy

Recall the approximation 1
yTAy`εyTSy “ 1

yTAy ´ ε yTSy
pyTAyq2 ` Opε2q. Then:

ρpA ` εSq “ 1 ´ pyT Ãy` εzTSzqp
1

yTAy ´ ε yTSy
pyTAyq2 ` Opε2qq

“ ρpAq ` ε p1 ´ ρpAqqyTSy ´ zTSz
yTAy ` Opε2q

The proof of the second point is identical.
4.3 The gradient of ρ with respect to hyper-parameters of the kernel:Let K px, x 1 ,W q be a family of kernels parametrized by W “ pW1, . . . ,Wlq P W, where l is the number ofparameters.In kernel flow algorithm, we seek to find the parameters of the kernel that minimize the loss function ρ. Ina practical manner, starting with initial values of the parameters W ,we evolve W using stochastic gradientdescent:

W ÐÝ W ´ ε∇WρpW q
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Where ∇WρpW q “ pBW1ρpW q, . . . , BWlρpW qqTLet us compute analytically the expression of BWiρpW q for i P t1, . . . , lu:
Corollary:Write Θ “ ΘpW q, ŷ “ Θ´1y and ẑ “ πT pπΘπT q´1πy. It holds true that:

BWiρpW q “ ´
p1 ´ ρpW qqŷT pBWiΘpW qqŷ´ ẑT pBWiΘpW qqẑ

ŷTΘ´1ŷ (12)
Proof. Recall the approximation: ΘpW ` εW 1

q “ ΘpW q ` εpW 1

qT∇WΘpW q ` Opε2q. Then:
ρpΘpW ` εW 1

qq “ ρpΘpW q ` εpW 1

qT∇WΘpW qq ` Opε2q

“ ρpΘ ` εT q ` Opε2q

Where T “ pW 1

qT∇WΘpW qProposition 4.4 implies that:
ρpW ` εW 1

q “ ρpW q ´ ε p1 ´ ρpW qqŷTT ŷ´ ẑTT ẑ
ŷTΘ´1ŷ ` Opε2q

This equation is valid for all W 1

P W, let set i P t1, . . . , lu,we choose W 1

“ p0, . . . , 0, 1, 0, . . . , 0qT , where thecoefficient 1 is in index i. It follows that: T “ BWiΘpW q.Which proves the result.
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5 Revisiting the interpolation problem from a signal model perspective
The goal of this project is learning a function from a finite number of sampled data points. Learning such afunction is an ill-posed problem in the sense that a small error in sampled data may result in a large error inthe resulting function. Because sampled data inevitably contain noise, the ill-posedness of these problems isunavoidable. Minimum norm interpolation and the regularization method are effective approaches to treat theill-posedness.
5.1 Regression problemFor a single output system, the continuous time signal model can be written as

y “ f pxq ` ε (13)
For a d-dimensional system, we measure n snapshots of the state variable at time points tt1, t2, ¨ ¨ ¨ , tnu, thenwe have the following measurement matrix:

X “

¨

˝x1 x2 ¨ ¨ ¨ xd

˛

‚“

¨

˚

˚

˚

˝

xJpt1q

xJpt2q...
xJptnq

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

x1pt1q x2pt1q ¨ ¨ ¨ xdpt1q

x1pt2q x2pt2q ¨ ¨ ¨ xdpt2q... ... . . . ...
x1ptnq x2ptnq ¨ ¨ ¨ xdptnq

˛

‹

‹

‹

‚

Frequency method: linear regression and kernel regressionBayesian method: Bayesian linear regression and Gaussian process regression
5.2 Linear regressionFor the signal Y “ pypt1q, ypt2q, ¨ ¨ ¨ , yptnqq

J to be linear in the unknown parameters, we assume
f pxq “ θJx

Substituting the time points in to the equation and arrange it in to a matrix notation,
Y “ Xθ ` ε

where θ P Rdˆ1 is the unknown parameters, ε is the model error.By using empirical risk minimization criterion, we can obtain the least square estimation:
θ̂ “ pXJX q´1XJY (14)

5.3 Geometrical interpretationsIf we denote the columns of X by xi, we have
f pxq “

“

x1 x2 ¨ ¨ ¨ xd
‰

»

—

—

—

–

θ1
θ2...
θd

fi

ffi

ffi

ffi

fl

“

d
ÿ

i“1 θixi

so that the signal model is seen to be a linear combination of the "signal" vectors “

x1 x2 ¨ ¨ ¨ xd
‰.Then, the LS error can be written as

Lpθq “ }Y ´

d
ÿ

i“1 θixi}
2
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We now see that the linear regression attempts to minimize the square of the distance from the data vector Yto the a signal vector řd
i“1 θixi, which is a linear combination of the columns of X . The data vector can lieanywhere in an N´dimensional space, termed RN , while all possible signal vectors, being linear combinationsof d ă N vectors, must lie in a d-dimensional subspace of RN , termed Xd . For example, N “ 3 and p “ 2we illustrate this in Figure 1. Note that all possible choices θ1, θ2 produce signal vectors constrained to liein the subspace X2 and that in general Y does not lie in the subspace. It should be intuitively clear that thevector x̂ that lies in X2 and that is closest to Y in the in the Euclidean sense is the component of Y in X2.Alternatively, x̂ is the orthogonal projection of Y onto X2. This means that the error ε “ Y ´ x̂ is orthogonalto the signal space.

geometric.pdf

Figure 1: Geometrical viewpoint of linear regression in R3
In summary, the linear regression can be interpreted as the problem of fitting or approximating a data vector
Y in RN by another vector x̂ , which is linear combination of vectors px1, x2, ¨ ¨ ¨ , xdq. The problem is solved bychoosing x̂ in the subspace to be the orthogonal projection of Y .
5.4 Kernel linear regression

y “ φpxqJθ ` ε (15)where φ is a feature map: Rd Ñ Rm with m ą d.The objective function can be written as
Lpθq “ }Φθ ´ Y }2

where Φ “ pφpx1q, φpx2q, ¨ ¨ ¨ , φpxdqq
J

P Rnˆd .Calculating the derivative the objective function and set to be zero gives the optimal solution
θ̂ “ pΦJΦq´1ΦJY (16)

Lemma 5.1. pΦJΦq´1ΦJ “ ΦJpΦΦJq´1. This is can be shown by using the singular value decomposition.let x‹ be a test data,in the light of Lemma 5.1, the optimal prediction can be obtained
f px‹q “ φpx‹qJθ̂ “ φpxqJΦJpΦΦJq´1Y (17)

Note that rΦΦJsij “ φpxptiqqJφpxptjqq :“ K pxptiq, xptjqq, and rφpx‹qJΦJsj “ φpx‹qJφpxptjqq :“ K px‹, xptjqq.Therefore, the equation (17) can be written as
f px‹q “ K px‹, X qkpX, Xq´1Y (18)

Representer theorem: In statistical learning theory, a representer theorem is any of several related resultsstating that a minimizer f ‹ of a regularized empirical risk functional defined over a reproducing kernel Hilbertspace can be represented as a finite linear combination of kernel products evaluated on the input points in thetraining set data.
Theorem 5.2. Consider a positive-definite real-valued kernel K : X ˆ X Ñ R on a non-empty set X with a
corresponding reproducing kernel Hilbert space Hk . The approximation f in the kernelized form can be express
as

f pxq “

m
ÿ

j“1 αjK pxptjq, xq (19)
Representer theorem can dramatically reduce an infinite dimensional problem to a dimensional one whosesolution can be obtained by solving either a linear system or a finite dimensional optimization problem.
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5.5 Bayesian linear regressionFrom Bayesian perspective, we assume that θ is a random variable whose particular realization we mustestimate. Consider linear model
f pxq “ θJx
y “ f pxq ` ε
ε „ p0, σ 2q

Build the Bayesian model:Introduce Gaussian prior ppθq “ N p0,Σpq, then the posterior ppθ|Dataq can be obtained by
ppθ|X, Y q “

ppθ, Y |X q

ppY |X q
“

ppY |θ, X qppθ|X q
ş

ppY |θ, X qppθ|X qdθ

Note that denominator is dependent with the parameter and ppθ|X q “ ppθq, therefore,
ppθ|X, Y q9ppY |θ, X qppθq “

N
ź

i“1 ppY ptiq|xptiq, θq ¨ N p0,Σpq

According to the signal model, we have ppY ptiq|xptiq, θq “ N pθJxptiq, σ 2q, we have
ppθ|X, Y q9

N
ź

i“1 N pθJxptiq, σ 2q ¨ N p0,Σpq

Therefore, the problem becomes
ppθ|Dataq „ N pµθ ,Σθq9

N
ź

i“1 N pθJxptiq, σ 2q ¨ N p0,Σpq (20)
Inference:First, calculate the likelihood

N
ź

i“1 N pθJxptiq, σ 2q “
1

p2πqN{2σ 2 exp ˜

´
12σ 2

N
ÿ

i“1pyptiq ´ θJxptiqq2¸

“
1

p2πqN{2σ 2 exp ˆ

´
12σ 2 pYJ ´ θJXJqpY ´ Xθq

˙

“
1

p2πqN{2σ 2 exp ˆ

´
12 pYJ ´ θJXJqσ´2IpY ´ Xθq

˙

Substituting the result into equation (20) and after a simple manipulation, we have
ppθ|Dataq9 exp ˆ

´
12 pYJ ´ θJXJqσ´2IpY ´ Xθq ´

12θJΣ´1
p θ

˙

“ exp ˆ

´
12σ 2 pYJY ´ 2YJXθ ` θJXJXθq ´

12θJΣ´1
p θ

˙

Recall a exponential part of a pdf ppxq „ N pµ,Σq is
exp ˆ

´
12 px ´ µqJΣ´1px ´ µq

˙

“ exp ˆ

´
12 pxJΣ´1x ´ 2µJΣ´1x ` cq

˙
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Comparing the two function gives the quadratic and first terms, respectively
xJΣ´1x “ θJσ´2XJXθ ` θJΣ´1

p θ “ θJpσ 2XJX ` Σ´1
p qθ (21)

where A :“ Σ´1
θ “ σ 2XJX ` Σ´1

p .
µJΣ´1x “ σ´2YJXθ (22)which means µJ

θ Σ´1
θ “ σ´2YJX ñ µθ “ σ´2A´1XJY .

Prediction:Given a x‹, the predicted result is
f px‹q “ x‹Jθ „ N px‹Jµθ , x‹JΣθx‹q

Recall Y “ f pxq ` ε , so we have the final prediction
ppY ‹|Data, x‹q „ N px‹Jµθ , x‹JΣθx‹ ` σ 2Iq (23)

5.6 Gaussian process regression
Weight space viewRecall that the linear scenario ppf pxq|Data, x‹q „ N px‹Jσ´2A´1XJY , x‹JA´1x‹q. If we define a nonlinearfeature mapping like equation (15), so the pdf is

ppf px‹q|Data, x‹q „ N pφpx‹qJσ´2A´1ΦpX qJY , φpx‹qJA´1φpx‹qq (24)
By using Woodbury Matrix Identity

pAnˆn ` UnˆkCkˆkVkˆnq´1 “ A´1 ´ A´1UpC´1 ` VA´1Uq´1VA´1
equation (24) can be manipulated as
ppf px‹q|Data, x‹q „ N pφpx‹qJΣpΦpΦΣpΦJ`σ 2Iq´1Y , φpx‹qJΣpφpx‹q´φpx‹qJΣpΦJpΦΣpΦJ`σ 2Iq´1ΦΣpφpx‹qq

Because Σp is a symmetric positive definite matrix, let Σp “ pΣ 12p q2, then we can get
K px, x 1q “ φpxqJΣ 12pΣ 12pφpx 1q

“ pΣ 12pφpxqqJ ¨ φpxqΣ 12p
“ă φpx, φpx 1qq ą

(25)
which is also called ’kernel trick’. Finally, the posterior is
ppf px‹q|Data, x‹q „ N pK px‹, X qpK pX, X q`σ 2Iq´1Y , K pX, Xq´K px‹, X qpK pX, Xq`σ 2Iq´1K pX, x‹qq (26)

How to link to Gaussian process?For a sequence of random variables tXtutPT , where T is a continuous domain. If and only if for every finite setof indices t1, ¨ ¨ ¨ , tk in the index set T , Xt1,¨¨¨ ,tk is a multivariate Gaussian random variable, then tXtutPT is aGaussian process.Given a prior ppθq „ N p0,Σpq, the expectation of f pxq is
Erf pxqs “ ErφpxqJθs “ φpxqJErθs “ 0
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For @x, x 1 P Rd ,
covpf pxq, f px 1qq “ Erpf pxq ´ Erf pxqsqpf px 1q ´ Erf px 1qsqs

“ Erf pxqf px 1qs

“ ErφpxqJθφpx 1qJθs

“ ErφpxqJθθJφpx 1qs

“ φpxqJErθθJsφpx 1q

“ φpxqJErpθ ´ 0qpθJ ´ 0qsφpx 1q

“ φpxqJΣpφpx 1q

“ K px, x 1q

Obviously, the covariance of f pxq is a kernel function.
Function space viewIn this regression problem, f pxq is a Gaussian process.

tf pxquxPRp „ GPpmpxq, K px, x 1qq

mpxq “ Erf pxqs, K px, x 1q “ Erpf pxq ´ mpxqqpf px 1q ´ mpx 1qqJs
(27)

The regression problem is y “ f pxq ` ε „ N pµpX q, K pX, X q ` σ 2IqGiven a new data: X‹ “ px‹1 , x‹2 , ¨ ¨ ¨ , x‹
NqNˆd , the adjoint probability density is

„

Y
f px‹q

ȷ

„ N
ˆ„

µpxq

µpx‹q

ȷ

,
„

K pX, X q ` σ 2I K pX, X‹q

K pX‹, X q K pX‹, X‹q

ȷ˙

Next we calculate ppf pX‹q|Y , X, X‹q, i.e ppf pX‹q|Y q, a conditional PDF. Recall that the equation
x “

„

xa
xb

ȷ

“

ˆ„

µa
µb

ȷ

,
„Σaa ΣabΣba Σbb

ȷ˙

xb|xa „ N pµb|a,Σb|aq

µb|a “ ΣbaΣ´1
aa pxa ´ µaq ` µbΣb|a “ Σbb ´ ΣbaΣ´1

aa Σabusing this equation gives the result
ppf pX‹q|Y q “ N pK px‹, XqpK pX, X q ` σ 2Iq´1pY ´ µpX qq ` µpX‹q,

K pX, X q ´ K pX‹, X qpK pX, X q ` σ 2Iq´1K pX, X‹qq
(28)

Add noise
ppf pX‹q|Y q “ N pK px‹, XqpK pX, X q ` σ 2Iq´1pY ´ µpX qq ` µpX‹q,

K pX, Xq ´ K pX‹, XqpK pX, X q ` σ 2Iq´1K pX, X‹q ` σ 2Iq
In conclusion, in the GPR method,1. From the weight space perspective, the prediction is

ppy‹|Data, x‹q “

ż

ppy‹|x‹, θqppθqdθ

2. From the function space perspective, the prediction is
ppy‹|Data, x‹q “

ż

ppy‹|x‹, f pxqqppf pxqqdf pxq
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Figure 2: Relationship between the four methods
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