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0 2020.12.16 Meeting 0: Introduction by Tiago
0.1 Invariant MeasuresGiven measurable transformation T : X Ñ X on measurable space pX, B q, our interest will be on invariantmeasures µ for T , that is, µpT´1pAqq “ µpAq for all A P B .Why the interest in invariant measures?1. Invariant measures are weighted averages of ergodic invariant measures (ergodic decomposition), whichcapture the long-term behavior of a “typical” trajectory (Birkhoff: time average limits to space averagea.e.) ergodic µ may not be informative if µ “ δa, where T paq “ a, because ta, a, ¨ ¨ ¨ u is the only µ-typicaltrajectory. To say its time average limits to space average is to say

φpaq “ lim
NÑ8

1
N

N´1
ÿ

n“0 φ ˝ T
npaq “

ż

X
φdδa “ φpaq.

But we knew this long-term behavior already, as a is always fixed.other times, e.g., when µ is equivalent to Lebesgue measure on X , then we may interpret ergodicityto mean that space average coincides with time average for practically all initial conditions.2. more reasons?Why is invariant measure defined via pre-images µ ˝ T´1 “ µ, as opposed to forward-images µ ˝ T “ µ?1. Trivially, when T is measurably invertible, the two candidate notions of invariance are equivalent.2. Less trivially, T˚µ “ µ ˝ T´1 is the natural way for T to evolve µ, whereas ν “ µ ˝ T is not. Indeed,invariance means that µ is fixed by the dynamics on the space of measures on pX, B q induced bymeasurable transformation T . To define invariance, we first need to specify this induced dynamics by T .Let µ be a given measure on pX, B q; this is interpreted as an initial distribution of masses on X . Weexplore the natural/possible ways for T to “evolve” µ, that is, what becomes of the distribution µ aftereach point x P X has evolved into T pxq.First, T˚µ “ µ ˝ T´1 is a natural way to evolve µ. To measure any event A P B one time unit into thefuture, we take
T˚µpAq :“ µpT´1pAqq,where T´1pAq is measurable by measurability of T . The forward direction of time is naturally understoodas forward/positive iterates of T , so that, relative to the present A, T´1pAq speaks of the past while T pAqof the future. In this way, the past µpT´1pAqq informs/determines the present T˚µpAq.Now let us try to evolve µ a different way, namely, into a measure ν on pX, B q defined by

νpAq :“ µpT pAqq, @A P B .

(a) problem of direction of time: the future µpT pAqq informs/determines the present νpAq; this isunnatural in that it violates the flow of time.(b) problem of measurability: the measurability of T does not guarantee that T pAq is measurable forall measurable sets A.(c) problem of well-definedness: if there are two disjoint sets A1, A2 P B with T pA1q “ T pA2q “ A,then
νpA1q ` µpA2q “ νpA1 Y A2q “ µpT pA1 Y A2qq “ µpAq “ νpAiq, i “ 1, 2,which implies µpAq “ νpA1q “ νpA2q “ 0. In order that this implication does not lead to contradic-tions, we must require the pair pT , µq be such that
A1, A2 P B with A1 X A2 “ H, T pA1q “ T pA2q ñ µpT pAiqq “ 0.

4



This happens when T is injective. If T is merely injective but not surjective, then T´1 is not definedon the entire space X . However, when T is bijective, by taking S “ T´1, we reduce to ν “ S˚µ,so this way of evolution simply runs time backwards.What about when T is not injective, but pT , µq just happens to satisfy the above requirement?A question related to the previous one is why a measurable transformation is defined via pre-images T´1pB q Ď
B , as opposed to forward-images T pB q Ď B ?An easy (circular) answer is that we need this notion of measurability to properly define T˚µ.
Proposition 0.1 (Characterization of Invariance via Observables). Let pX, B , µq be a measure space and T :
X Ñ X a measurable transformation. Then, µ is T -invariant if and only if

ż

X
φ ˝ Tdµ “ ż

X
φdµ, @φ P L1pµq.

Proof. pñq By invariance, we have
ż

X
1A ˝ Tdµ “ ż

X
1T´1pAqdµ “ µpT´1pAqq “ µpAq “

ż

X
1Adµ, @A P B .

Linearity generalizes this to all simple functions φ, and Dominated Convergence generalizes to all φ P L1pµq.
pðq By taking φ “ 1A P L1pµq, we have

µpT´1pAqq “ ż

X
1T´1pAqdµ “ ż

X
1A ˝ Tdµ “ ż

X
1Adµ “ µpAq, @A P B .

This completes the proof.
0.2 Absolutely Continuous Invariant MeasuresNot all invariant measures are informative. Suppose T has a fixed point x0 “ T px0q P X . Then, the pointmeasure δx0 is T -invariant

T˚δx0 “ δT px0q “ δx0 .This only repeats the given information that x0 is fixed by T , only in the language of the induced dynamics of
T˚ on the space of measures.More generally, for any periodic orbit x “ tx0 “ T ppx0q, ¨ ¨ ¨ , xp´1u of T of period p ě 1, the average of pointmeasures on each point in the periodic orbit

δx :“ δx0 ` ¨ ¨ ¨ ` δxp´1
pis an (uninformative) T -invariant probability measure.An interesting dynamical system (e.g. Bernoulli maps on the circle, Anosov diffeomorphisms, the Horseshoe)tends to have many periodic orbits, which give rise to many uninformative invariant measures. It is thereforenatural to restrict our attention to the “meaningful” or “informative” invariant measures.When X is an open set in Rd (or more generally, a Riemannian manifold), invariant measures which areabsolutely continuous with respect to the Lebsgue (Riemannian volume) measure on X tend to be meaningful,in the following sense.A pointwise property PB (e.g. long-term statistics of a trajectory) is understood to be observable (in physicaland numerically simulated experiments) if it holds for every point in a set B of positive volume LebpBq ą 0.Absolute continuity of invariant measure µ ! Leb implies

LebpBq ą 0 for any B with µpBq ą 0;
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in other words, positivity of µpBq guarantees observability of property PB . In this sense, absolutely continuousinvariant measures are meaningful and informative. A famous example is the Liouville measure for Hamiltoniansystems.Moreover, with the additional restriction of absolute continuity, one may hope to, in some cases, establishexistence and uniqueness of an acip (absolutely continuous invariant probability measure), and then arrive atfurther dynamical insights.There is a natural way to construct absolutely continuous measures. Let f P L1pLebq. Then, the finite measure
µf given by

µf pAq :“ ż

A
fdLeb.

is absolutely continuous with respect to Leb. This construction can also be reversed.
Theorem 0.2 (Radon-Nikodym, [LM94] Theorem 2.2.1). Let pX,A, µq be a σ-finite measure space and ν a finite
measure on pX,Aq with ν ! µ. Then, there is a µ-essentially unique f P L1pµq with f ě 0 such that

νpAq “
ż

A
fdµ, @A P A.

We write f “ dνdµ and call it the Radon-Nikodym derivative of ν with respect to µ.We now turn the discussion on invariance of absolutely continuous measures into the context of Radon-Nikodymderivatives. Consider f P L1pLebq and µf its induced a.c. measure. By Characterization of Invariance viaObservables Proposition 0.1, T -invariance of measure µf reduces to
ż

X
φ ˝ Tdµf “ ż

X
φdµf , @φ P L1pµf q.

By change of variables formula,
ż

X
pφ ˝ T qfdLeb “ ż

X
φ ˝ Tdµf “ ż

X
φdT˚µf “ ż

X
φdT˚µfdLeb dLeb,

where
pT f :“ dT˚µfdLebdenotes the Radon-Nikodym derivative. For its existence, we need to ensure T˚µf ! Leb; this will be guaranteedby requiring the transformation T to be “nonsingular”. More details will be given in the next lecture. Underappropriate hypotheses, the Transfer Operator pT is defined for all f P L1pLebq and returns pT pf q P L1pLebq.Briefly recapped, the nonsingular transformation T : X Ñ X induces a new dynamics on the space of (finitea.c.) measures on X given by the push-forward T˚, which in turn induces the dynamics pT on the space L1pLebqof Radon-Nikodym derivatives (for signed real measures).We illustrate how f ÞÑ pT f is related to the dynamics of T .

Example 0.3 (Bernoulli Map). Consider the circle S1 “ R{Z and the Bernoulli map
T : S1 Ñ S1, x ÞÑ 2x mod 1.
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Figure 1: The inverse image of an interval A in the circle under the Bernoulli map is the union A1 Y A2 of twointervals of half length.
We claim Leb is invariant for T . It is easy to check invariance for intervals: if A is an interval on the circle,then LebpT´1pAqq “ LebpA1 ` A2q “ 12LebpAq ` 12LebpAq “ LebpAq.Since the intervals generate the Borel σ-algebra on the circle, T -invariance of Leb follows.Note that the invariance of Leb is equivalent to

pT1 “ 1.Hence, any constant function is invariant under pT .To calculate pT f for a general f P L1pLebq, take observable φ : S1 Ñ R.
ż

S1pφ ˝ T qfdLeb “ ż 1
0 φp2x mod 1qf pxqdLebpxq “ ż 1{2

0 φp2xqf pxqdpxq ` ż 1
1{2 φp2x ´ 1qf pxqdpxq

“

ż 1
0 φpyqf

´y2¯ 12dy` ż 1
0 φpyqf

ˆ

y` 12
˙ 12dy “ ż 1

0 φpyq
f
`y2 ˘` f

´

y`12
¯

2 dy.
where we change variables y “ 2x in the first integral and y “ 2x ´ 1 in the second integral. This shows that

pT f pyq “
f
`y2 ˘` f

´

y`12
¯

2 .

When f P L1pLebq is a Lipschitz function with Lipschitz constant K ą 0, we investigate the Lipschitz constantof pT f . For any x, y P S1, we have
|pT f pxq ´ pT f pyq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f
` x2˘` f

` x`12 ˘

2 ´

f
`y2 ˘` f

´

y`12
¯

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f
` x2˘´ f

`y2 ˘2 `

f
` x`12 ˘

´ f
´

y`12
¯

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

f
` x2˘´ f

`y2 ˘2
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f
` x`12 ˘

´ f
´

y`12
¯

2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
K4 dpx, yq ` K4 dpx ` 1, y` 1q “ K2 dpx, yq.

This shows pT f P LipK {2, and iterates into
pT nf P LipK {2n , @n P N.
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So pT takes a K -Lipschitz f into Lipschitz functions pT nf with Lipschitz constants shrinking exponentially fastto 0. This is a good indication that the operator pT “squashes” all Lipschitz functions into constant functions,which are invariant under pT .In the next lecture, we will give a precise argument by showing that pT contracts on a subspace of the space ofLipschitz functions, appropriately normed.Tiago remarks that this contraction argument scheme, together with Banach Fixed Point Theorem, is a verygeneral one in Transfer Operator methods for constructing invariant Radon-Nikodym derivatives, and therebyinvariant a.c. probability measures. The magic (underrated component) of this scheme is to find the appropriatesubspace H of Radon-Nikodym derivatives for pT to act on, and to norm it appropriately so that pT contractsthereon, while ensuring a certain domination of norms, in this case:
}f}8 ď Lippf q,

where Lippf q is the best Lipschitz constant of f .
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1 2021.1.6 Meeting 1: Climenhaga Notes
In this lecture, we hope to define the transfer operator for a nonsingular transformation, finish Climenhaga’slecture notes, making rigorous the contraction argument on the space of Lipschitz functions and understandingthe magic-ness of the domination of norms. For a continuation of Climenhaga’s notes, follow the posts here:
https://vaughnclimenhaga.wordpress.com/2013/01/30/spectral-methods-in-dynamics/.In this lecture, we follow Vaughn Climenhaga’s brief lecture notes [Cli13] on Spectral methods in dynamics, inorder to deepen and sharpen the intuition of the subject which Tiago introduced last time.Let X be a compact metric space; in this lecture, it is okay to assume X is the compact unit interval r0, 1s.And let T : X Ñ X be a continuous (or at least piecewise continuous) transformation. Here, T specifies thedynamical system with states in X , and is taken to be “chaotic”, in the sense that two nearby states will rapidlybe driven far apart by the dynamics, e.g., doubling map on the circle x ÞÑ 2x mod 1.A measurable function φ : X Ñ C is called an observable, and represents an observation or measurement ofthe dynamical system pT , X q made at time 0. Measurements made at future times k ě 0 are given by the timeseries

tφ ˝ T kukě0.When X is also a probability space, then these are random variables and characterize the statistical propertiesof dynamical system pT , Xq. Our central interest is to investigate whether or not these random variables areindependent or uncorrelated, so as to conclude statistical results.For independent and identically distributed (iid) random variables, e.g., a fair coin flip, there are variousstatistical results, including the Strong Law of Large Numbers (SLLN) and Central Limit Theorem (CLT).
Theorem 1.1 (Strong Law of Large Numbers; [Dur13] Theorem 2.4.1). Let X1, X2, ¨ ¨ ¨ be pairwise independent
and identically distributed random variables with Er|Xi|s ă `8. Then,

X1 ` ¨ ¨ ¨ ` Xn
n

a.s.
ÝÝÝÝÑ
nÑ`8

µ :“ ErXis.

Theorem 1.2 (Central Limit Theorem; [Dur13] Theorem 3.4.1). Let X1, X2, ¨ ¨ ¨ be a sequence of iid random
variables with ErXis “ µ and VarrXis “ σ 2 P p0,`8q. Then,1

σ
?
n

n
ÿ

i“1pXi ´ µq in distribution
ÝÝÝÝÝÝÝÑ

nÑ`8
Np0, 1q.

In many cases, it turns out that both can hold for our random variables tφ˝T ku of interest, even though they arenot really iid because of the strong correlation between φ and φ ˝ T k for small times k . When this correlationdecays as k Ñ `8, it is reasonable to ask if SLLN and CLT hold.
1.1 Invariance and Identical DistributionLet µ be a Borel probability measure on X . We say µ is T -invariant if

µ ˝ T´1pAq “ µpAq, @ Borel set A Ď X.If we interpret µpAq as the probability of event x P A occurring at time 0, then µpT´1pAqq denotes the probabilityof event x P T´1pAq occurring at time 0, or equivalently, T pxq P A, that is, x lands in A after 1 unit of time.Therefore, invariance amounts to the condition that the probability of event A at time 0 (x P A) is the same asit is at any future time k ě 0 (x P T´kpAq, or equivalently, T kpxq P A).Invariance of the probability measure µ on state space X ensures that the sequence of random variables
φ ˝ T k : X Ñ Care identically distributed, sharing the common distribution

pφ ˝ T kq˚µ “ µ ˝ pφ ˝ T kq´1 “ µ ˝ T´k ˝ φ´1 “ µ ˝ φ´1 “ φ˚µ.Independence, however, as mentioned before, still fails.
9
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1.2 Ergodicity, Birkhoff and SLLNRecall Proposition 0.1 which characterizes invariance defined in terms of Borel subsets via L1 observables:
µ ˝ T´1 “ µ ðñ

ż

φdµ “ ż

φ ˝ Tdµ, @φ P L1pX, µq.
In other words, invariance means that the expected value Eµrφs “

ş

φdµ of any observation φ made at time 0is the same as if it is Erφ ˝ T k s “
ş

φ ˝ T kdµ to be made at any future time k ě 0.Recall also ergodicity of invariant probability measure µ with respect to transformation T , defined equivalentlyby any one of the three conditions:1. if event A is invariant, that is, A “ T´1pAq, then A is either null or full, that is, µpAq P t0, 1u.2. if observable φ P L1pX, µq is invariant, that is, φ “ φ ˝ T µ-a.e., then φ ” const µ-a.e.3. µ cannot be written as a convex combination of two other invariant measures.The ergodic thesis is that “time average equals space average”.
Theorem 1.3 (Birkhoff; [Dur13] Theorem 7.2.1). If µ is an invariant probability measure for T : X Ñ X, then
for any observable φ P L1pX, µq, we have

1
n

n´1
ÿ

k“0φ ˝ T
kpxq a.s. & L1

ÝÝÝÝÝÑ
nÑ`8

Erφ|Is,

where I denotes the σ-subalgebra consisting of almost invariant events.The ergodic thesis is a direct consequence of this theorem applied to an ergodic invariant probability measure.
Corollary 1.4. If µ is an ergodic invariant probability measure for T : X Ñ X, then I is trivial, i.e., consists of
either full or null events, and hence

1
n

n´1
ÿ

k“0φ ˝ T
kpxq a.s. & L1

ÝÝÝÝÝÑ
nÑ`8

Erφ|Is ” ErErφ|Iss “ Erφs.

This is precisely the SLLN for our sequence of random variables tφ ˝ T ku.
1.3 Mixing and Decay of CorrelationsTo obtain CLT, we really need to worry about independence. Let us recall some definitions of independence inprobability space pX, B , µq.1. two events A, B are independent if µpAX Bq “ µpAqµpBq;2. two σ-subalgebras B1, B2 Ď B are independent if any pair of events Bi P Bi, i “ 1, 2, are independent;3. two random variables φ, ψ : X Ñ Y are independent if their induced σ-subalgebras φ´1pBY q and

ψ´1pBY q are independent.If the state of our invariant system pT , µq at time k were (completely) independent of the state at time 0, then
B and T´kpB q would be two independent σ-subalgebras, that is,

µpAX T´kpBqq “ µpAqµpT´kpBqq “ µpAqµpBq, @A, B P B .

Example 1.5 (Bernoulli Shift/ Coin Tosses). Even though it is highly unlikely that a nontrivial dynamical systemat time 0 is truly independent of itself at time k ě 0, there are cases where the observation φ at time 0 istruly independent of the same observation φ ˝ T k at time k ě 1. Consider the experiment of tossing a fair coin,modelled by Bernoulli shift on two symbols
σ : Σ`2 Ñ Σ`2 , P “ pN.

10



If we simply observe the outcome of the experiment at time k ě 0, then we have iid random variables (projectionsdown to the k-th coordinate)
πk “ π0 ˝ σ k .

As we consider deterministic systems with short-term correlations, this complete independence generally fails,but we can still ask for it to hold asymptotically:
lim

kÑ`8
µpAX T´kpBqq “ µpAqµpBq, @A, B P B .

This is the defining condition for a mixing measure.In order to study the statistical behavior of system pT , µq, we need to understand the “rate of mixing”, that is,the rate at which correlations decay to 0.In the same spirit as in Proposition 0.1, the mixing property defined in terms of Borel subsets can be characterizedvia observables: lim
kÑ`8

ż

pφ ˝ T kqψdµ “ ż

φdµ ż ψdµ, @φ, ψ P L2pX, µq.
A priori this convergence can happen arbitrarily slowly for a mixing measure µ, and it generally does. However,on a “reasonable nice” subspace of L2pX, µq – where the transfer operator has nice “spectral properties”, thisconvergence happens exponentially fast. To remind ourselves of the goals now:• find invariant measures for system T : X Ñ X , some of which are uninformative;

– for the ergodic invariant measures, Birkhoff yields SLLN;∗ within the ergodic invariant measures, we now want to find the ones for which· correlation decays exponentially fast;· CLT holds;· maybe more statistical laws hold.
1.4 Examples of Piecewise Expanding Interval Maps
Example 1.6 (Doubling Map). On the compact unit interval X “ r0, 1s, consider doubling map

T : X Ñ X, x ÞÑ 2x mod 1.

Figure 2: The doubling map T : x ÞÑ 2x mod 1.
11



1. Leb “ T˚Leb is invariant and, in fact, ergodic;2. the derivative T 1pxq “ 2 for all x P r0, 1{2q Y p1{2, 1s. (If we consider the doubling map on the circleinstead, then x “ 1{2 will no longer be a discontinuity and so T 1 ” 2.)
Example 1.7 (Piecewise Expanding Interval Map). Partition the compact unit inverval r0, 1s into finitely manysubitervals I1, ¨ ¨ ¨ , Id . Let T : r0, 1s Ñ r0, 1s be a map whose restriction to the interior of each subinterval Ii is
C 2 and

|T 1| ě λ ą 1, where differentiable.

Figure 3: A piecewise expanding interval map.
The Lebesgue measure serves as a reference of “observability” in the sense that a property that holds for a setof points of positive Lebesgue measure is understood as observable in physical and simulated experiments.As Leb is already invariant and ergodic for the doubling map, it is therefore natural to talk about statisticalproperties of the doubling map system with respect to Leb.The more general piecewise expanding interval map T is chaotic in the sense that nearby points are drivenfar apart exponentially quickly by the expanding condition on T . But Leb is generally not invariant for T , sowhich invariant measure µ should we use to study its statistical properties?A good restriction is absolute continuity (µ ! Leb), because it ensures that a µ-a.e. result will hold for Leb-a.e.point and hence will be observable.Let M denote the space of absolutely continuous probability measures on X , and DpX, Lebq the space ofdensities

DpX, Lebq :“ tψ P L1pX, Lebq : ψ ě 0, }ψ}L1 “ 1u.
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Radon-Nikodym Theorem1 provides a correspondence between M and D.
M Ñ DpX, Lebq, µ ÞÑ dµdLeb
DpX, Lebq Ñ M, ψ ÞÑ µψ , µψpAq :“ ż

A
ψdLeb

1.5 Transfer OperatorThe transformation T : X Ñ X induces push-forward dynamics on the space of (a.c. probability) measures
T˚ : M Ñ M, µ ÞÑ T˚µ,

which, via the Radon-Nikodym correspondence, give rise to dynamics on the space of densities
D Ñ D, ψ ÞÑ pTψ,

where pTψ is the density of a.c. probability measure T˚µψ . To guarantee the existence and uniqueness of pTψ ,we use the Radon-Nikodym Theorem. For this, we require the nonsingularity condition on transformation T .
Definition 1.9 (Nonsingular Transformation). Let pX,A, µq be a measure space. A measurable transformation
T : X Ñ X is called nonsingular with respect to µ if

µpAq “ 0 ñ µpT´1pAqq “ 0, @A P A.

Definition 1.10 (Transfer Operator & Koopman Operator). When the transformation T : X Ñ X is nonsingular,and ψ P L1pX, Lebq, then the push-forward T˚ takes the a.c. signed finite measure µψ into another a.c. signedfinite measure T˚µψ , which necessarily has an essentially unique Radon-Nikodym derivative2
pTψ :“ dT˚µψdLeb P L1pX, Lebq.

Equivalently, the transfer operator may be defined as the adjoint of the Koopman operator

L8pX, Lebq Ñ L8pX, Lebq, φ ÞÑ φ ˝ T .

We remark that (i) φ ˝T P L8 for any φ P L8, provided T is nonsingular; (ii) L8 is the dual of L1; and (iii) theKoopman operator is bounded and linear. Linearity is clear. To check boundedness, note, by nonsingularity of
T , we have

}φ ˝ T }L8 “ ess sup|φ ˝ T | ď ess sup|φ| “ }φ}L8
1

Theorem 1.8 (Radon-Nikodym, [LM94] Theorem 2.2.1). Let pX,A, µq be a σ-finite measure space and ν a finite measure on pX,Aq with
ν ! µ. Then, there is a µ-essentially unique f P L1pµq with f ě 0 such that

νpAq “
ż

A
fdµ, @A P A.

We write f “ dνdµ and call it the Radon-Nikodym derivative of ν with respect to µ.

2For the Radon-Nikodym derivative of an a.c. signed finite measure, we need a more general version of Radon-Nikodym Theorem.
Theorem 1.11 (Lebesgue-Radon-Nikodym; [Rud87] Theorem 6.10). Let µ be a real positive σ-finite measure on a measurable space pX,Fq,
and λ another complex measure on pX,Fq.

(a) There is then a unique pair of complex measures λa and λs on pX,Fq such that

λ “ λa ` λs, λa ! µ, λs K µ

Moreover, if λ is real positive and finite, then so are λa and λs .
(b) There is a unique h P L1pµq such that

λapEq “
ż

E
hdµ, @E P F.
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The transfer operator
pT : L1pX, Lebq Ñ L1pX, Lebq, ψ ÞÑ pTψ,being the dual of the Koopman operator, is then defined by duality equation

ż

pφ ˝ T qψdLeb “ ż

φppTψqdLeb, @φ P L8pX, Lebq.
The two definitions are equivalent by essential uniqueness.When T : X ÞÑ X is a piecewise expanding map on the compact unit interval X “ r0, 1s, then T is nonsingular,and we may write out explicitly the action of the transfer operator:

pTψpxq “
dT˚µψdLeb “

ÿ

yPtT´1xu
ψpyq
|T 1pyq| . (1)

Indeed, denote the restrictions of T on each subinterval by Ti :“ T |Ii and observe each Ti is monotone because
|T 1i | ě λ ą 1. So each Ti is a diffeomorphism from Ii onto its image T pIiq. By the Inverse Function Theorem,we have

pT´1
i q1pxq “ 1

T 1pT´1
i pxqq

, x P Ii.

To verify the formula (1), it suffices to check
ż

A

ÿ

yPtT´1xu
ψpyq
|T 1pyq|dLebpxq “ T˚µψpAq, @A P B .

We first split the preimage T´1pAq into the finite disjoint union
T´1pAq “ď

i
T´1
i pAq,

where T´1
i Ď Ii are disjoint, and then compute

T˚µψpAq “µψpT´1pAqq “ ż

T´1pAq ψpyqdy “
ż

Ť

i T
´1
i pAq

ψpyqdy
“
ÿ

i

ż

T´1
i pAq

ψpyqdy because the finite union is disjoint
“
ÿ

i

ż

A
ψpT´1

i pxqq
ˇ

ˇ

ˇ
det DT´1

i |x

ˇ

ˇ

ˇ
dx change variables y “ T´1

i pxq

“

ż

A

ÿ

i
ψpT´1

i pxqq
ˇ

ˇ

ˇ

ˇ

1
T 1pT´1

i pxqq

ˇ

ˇ

ˇ

ˇ

dx
“

ż

A

ÿ

yPtT´1xu
ψpyq
|T 1pyq|dx.

The boundaries of the subintervals can be ignored here because they form a null set. In fact, the formula (1)holds in general for C 1 expanding maps on a compact Riemannian manifold, cf. Chapter 11 of [VO16], andcan be further extended to piecewise invertible expanding maps on a compact subset in Euclidean space, cf.[Sau98].The transfer operator pT is useful, firstly, because it reduces the quest for an acip to that of a fixed density, i.e.,a fixed point of pT in D, that is, an eigenfunction of pT with eigenvalue 1; secondly, because by iterating theduality equation, we otain
ż

pφ ˝ T kqψdLeb “ ż

φppT kψqdLeb, φ P L8pX, Lebq, ψ P L1pX, Lebq, k ě 0,
14



and thus the decay of correlations condition
lim

kÑ`8

ż

pφ ˝ T kqψdµ “ lim
kÑ`8

ż

φppT kψqdLeb “ ż

φdµ ż ψdµ, @φ, ψ P L2pX, µq
can be understood in terms of the spectral properties of the transfer operator pT apart from its eigenvalue 1.The (normalized) eigenfunction corresponding to the largest eigenvalue is the density of the acip, and thepresence of a “spectral gap” between this eigenvalue and smaller eigenvalues leads to exponential decay of
pT kψ when ş

ψdLeb “ 0. This is how spectrum of pT informs decay of correlation and other statistical properties.Viana in Stochastic Dynamics for Determinisitc Systems proves the Central Limit Theorem for smooth expandingmaps on manifolds and for piecewise expanding maps. His results imply that CLT holds for our case of piecewiseexpanding interval maps, but his proof method relies on an abstract CLT based on the martingale central limittheorem, and therefore may not be very relevant to our discussion of the Transfer Operator method.Though he does use the Transfer Operator method to obtain decay of correlations for a different class ofobservables; Viana’s Transfer Operator method employs the projective metric on cones of densities, as opposedto Climenhaga’s Lipschitz norm.
1.6 Decay of Correlations for Doubling Map
From Tiago’s introductory lecture, we know the transfer operator pT for the doubling map T : r0, 1s Ñ r0, 1s,
x ÞÑ 2x mod 1 has the form

pTψpxq “
ψ
` x2˘` ψ

` x`12 ˘

2 , ψ P L1pr0, 1s, Lebq.
(Reality check: this is consistent with formula 1.)Note

pT1 “ 1,which is equivalent to the Lebesgue measure itself being invariant for T .To prove exponential decay of correlations, we need to find a suitable Banach space Ď L1, where pT acts witha “spectral gap”.On the space Lip of Lipschitz continuous functions ψ : r0, 1s Ñ C, the best Lipschitz constant
|ψ|Lip :“ sup

x‰yPr0,1s
|ψpxq ´ ψpyq|
|x ´ y|

is a semi-norm, which fails to be a true norm only because it vanishes on all constant functions.We improve upon | ¨ |Lip and define a true norm } ¨ }Lip on Lip by
}ψ}Lip :“ }ψ}L8 ` |ψ|Lip.

The key reason for considering | ¨ |Lip and } ¨ }Lip is that pT shrinks the semi-norm | ¨ |Lip by half:
|pTψ|Lip ď 12 |ψ|Lip, @ψ P Lip,

as was proved in the last lecture.Since every ψ P Lip can be written into
ψ “ cψ1` ψ̂,where cψ “ ş

ψdLeb is the average of ψ and ş

ψ̂dLeb “ 0, it follows that the space Lip decomposes into
Lip “ C1‘ H, H :“ tψ̂ P Lip : ż ψ̂dLeb “ 0u.
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Note this decomposition is forward-invariant under pT . Indeed, pT1 “ 1 implies pT pC1q “ C1; on the other hand,if ş ψ̂dLeb “ 0, then
ż

pT ψ̂dLeb “ ż

p1 ˝ T qψ̂dLeb “ ż

ψ̂dLeb “ 0,
and so pT pHq Ď H .Also, if ψ̂ P H , then }ψ̂}L8 ď |ψ̂|Lip. Indeed, the range ψ̂pr0, 1sq of observable ψ̂ has diameter

diamψ̂pr0, 1sq ď |ψ̂|Lipdiampr0, 1sq “ |ψ̂|Lip,
and contains 0 in its closed convex hull3, because ş

ψ̂dLeb “ 0. We thus conclude
}ψ̂}L8 “ ess sup|ψ̂| ď diamψ̂pr0, 1sq ď |ψ̂|Lip, @ψ̂ P H.

To estimate the decay of correlations
Ckpφ, ψq “

ż

pφ ˝ T kqψdLeb´ pż φdLebqpż ψdLebq “ ż

φppT kψqdLeb´ pż φdLebqcψ
“

ż

φpT kpcψ1` ψ̂qdLeb´ cψ
ż

φdLeb “ ż

φppT k ψ̂qdLeb,
note

}pT k ψ̂}L8 ď |pT k ψ̂|Lip ď 2´k |ψ̂|Lip “ 2´k |ψ|Lip, @ψ̂ P H,and hence we conclude, for φ P L1pr0, 1s, Lebq and ψ P Lip, the correlations decay exponentially fast
|Ckpφ, ψq| “

ˇ

ˇ

ˇ

ˇ

ż

φppT k ψ̂qdLebˇˇˇ
ˇ

ď }φ}L1}pT k ψ̂}L8 ď 2´k}φ}L1 |ψ|Lip.
1.7 Spetral Gap
Definition 1.12 (Spectrum). The spectrum of a bounded linear operator A : B Ñ B on a Banach space B isdefined to be

σpAq :“ tλ P C : A´ λid is not an invertible operator on Bu.
Remark 1.13. 1. the point spectrum consisting of all eigenvalues of A is contained in the spectrum σpAq,but they are not always equal.2. the spectrum σpAq is always compact and nonempty.From previous discussion on doubling map T , we know pT1 “ 1 and so 1 is an eigenfunction corresponding toeigenvalue 1 of operator pT .By invariant decomposition Lip “ C1‘ H , we deduce

σppT q “ t1u Y σppT |Hq.

In other words, apart from the eigenvalue 1, the spectrum σppT q is determined by its action on H .
3To see this geometrically, one may view the integral of ψ̂ against the probability measure Leb on r0, 1s as an average for all values

ψ̂pxq, x P r0, 1s. This average is approximated by a finite mixture (convex combination) evenly spaced out on the interval, that is,
µn :“ 1

n` 1 n
ÿ

i“0 δi{n
˚
ÝÑ Leb.

Hence, 1
n` 1 n

ÿ

i“0 ψ̂pi{nq “
ż

ψ̂dµn Ñ ż

ψ̂dLeb “ 0.
This gives a direct proof that 0 “ ş

ψ̂dLeb is in the closed convex hull of ψ̂pr0, 1sq. For a more general discussion of how the in-tegral against a probability measure compares with a convex combination, see https://mathoverflow.net/questions/164836/
is-an-integral-against-a-probability-measure-in-the-convex-hull-of-the-range.
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Definition 1.14 (Spectral Radius). The spectral radius ρpAq of a bounded linear operator A : B Ñ B on aBanach space B is defined to be
ρpAq :“ supt|λ| : λ P σpAqu.

From functional analysis (see [Con85] Proposition 3.8), we have
ρpAq “ lim

nÑ`8
}An}1{n ď }A},

where } ¨ } is any norm on B.On H Ď Lip, the semi-norm | ¨ |Lip becomes a true norm, because the only constant function in H is the zerofunction. And norm | ¨ |Lip is equivalent to } ¨ }Lip
|ψ̂|Lip ď }ψ̂}Lip “ }ψ̂}L8 ` |ψ̂|Lip ď 2|ψ̂|Lip, @ψ̂ P H.

Since the operator pT shrinks the best Lipschitz constant by half, it follows that
ρppT |Hq ď |pT |H |Lip ď 1{2.

Figure 4: The spectrum σppT q of the transfer operator pT for the doubling map T : x ÞÑ 2x mod 1 has a gap.
Definition 1.15 (Spectral Gap). A bounded linear operator A : B Ñ B on a Banach space B is said to have a
spectral gap if1. A has at most finitely many eigenvalues on the unit circle;2. the rest of the spectrum σpAq is contained in a disk centered at 0 of radius ρ ă 1.In order to generalize our argument to a piecewise expanding interval map T , we need to find a suitable Banachspace B Ď L1pr0, 1s, Lebq, where the transfer operator pT acts with a spectral gap. It then follows that1. the eigenfunction(s) corresponding to eigenvalue 1 are precisely the densities for acim; there will not beany eigenvalue outside the unit disk, because pT is a Markov operator and so, in particular, }pTψ}L1 ď }ψ}L1for all ψ P L1.2. fix any r P pρ, 1q, where Dp0, ρq contains the rest of the spectrum σppT |Bq. Then, there is Cr ą 0 suchthat

}pT k}B ď Crrk .So the correlations decay exponentially fast at rate r , for any pair of observables φ, ψ chosen fromsuitable function spaces.Furthermore, it will also be interesting to consider a more general class of transfer operators associated to“potential functions”, for which the largest eigenvalue may not be 1.
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2 2021.1.13 Meeting 2: Sarig L1, Transfer Operator; Definition, Basic
Properties & Examples

For a chaotic dynamical system T : S Ñ S , such as ink diffusion in water, it is usually difficult to predict theevolution of an individual trajectory, because “chaotic” means that two nearby points are driven apart rapidlyby the dynamics. However, it is often easier to study the evolution of mass densities for such systems. In the inkexample, even though the trajectory of any ink particle in water is intractable, the densities of all ink particlesin water will tend to become uniform.The evolution of mass densities is given by the transfer operator.
2.1 Transfer Operator, Definition
Definition 2.1 (Nonsingular Transformation). Let pX, B , µq be a σ-finite measure space, and T : X Ñ X a
non-singular transformation, that is,

µpT´1Eq “ 0 ðñ µpEq “ 0, @E P B .

Remark 2.2. Note Sarig’s definition of nonsingularity is stronger than that in Lasota-Mackey [LM94], whereonly one direction of implication µpEq “ 0 ñ µpT´1Eq “ 0 is required. Even the weaker version suffices toguarantee existence of transfer operator. The σ-finiteness of µ is required for Radon-Nikodym Theorem.One starts by distributing the ink particles in water according to density fdµ, where f P L1pµq, f ě 0, andposes the question what becomes of this density, after applying transformation T to each point x P X ?The mass of points landing in E is given by
ż

1EpTxqf pxqdµpxq “ ż

1T´1Edµf pxq where µf is defined by µf pEq “ ż

E
fdµ

“

ż

1Edµf ˝ T´1
“

ż

1E
dµf ˝ T´1dµ dµ,

where the Radon-Nikodym derivative dµf˝T´1dµ exists and is unique because µf ˝ T´1 ! µ by nonsingularity of
T . Indeed, if µpEq “ 0, then µpT´1Eq “ 0 by nonsingularity of T , and hence µf ˝ T´1pEq “ ş

T´1E fdµ “ 0.We may extend this procedure to all f P L1pµq and obtain the definition of the transfer operator pT .
Definition 2.3 (Transfer Operator). The transfer operator pT of a nonsingular transformation pT , X, B , µq isdefined to be

pT : L1pµq Ñ L1pµq, f ÞÑ dµf ˝ T´1dµ ,

where dµf˝T´1dµ is the Radon-Nikodym derivative of absolutely continuous signed measure µf ˝T´1 with respectto µ.We conveniently characterize this abstract definition of the transfer operator via observables.
Proposition 2.4 (Characterization of Transfer Operator via Observables). For any f P L1pµq, pT f is the unique
element in L1pµq such that

ż

φppT f qdµ “ ż

pφ ˝ T qfdµ, @φ P L8pµq.
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Proof. First we show the above duality equation holds. Let φ P L8pµq.
ż

φppT f qdµ “ ż

φ dµf ˝ T´1dµ dµ by definition of pT
“

ż

φdµf ˝ T´1 by definition of Radon-Nikodym derivative
“

ż

pφ ˝ T qdµf change variables
“

ż

pφ ˝ T qfdµ by definition of µf .
Next, we show that the duality equation characterizes pT f . Suppose h1, h2 P L1pµq both satisfy the dualityequation. Let φ :“ signph1 ´ h2q, which is bounded and hence L8. Then, for any φ P L8pµq, according to theCharacterization of pT via Observables Proposition 2.4, we have

ż

|h1 ´ h2|dµ “ ż

φph1 ´ h2qdµ “ ż

φh2dµ ´ ż

φh2dµ “ ż

pφ ˝ T qfdµ ´ ż

pφ ˝ T qfdµ “ 0.
It then follows that h1 “ h2 µ-a.e. This shows the duality equation uniquely determines pT f and completes theproof.
Proposition 2.5 (Basic Properties of Transfer Operator). 1. The transfer operator pT is a positive bounded

linear operator on L1 with induced operator norm }pT }L1 “ 1.

2. For any f P L1pµq and g P L8pµq, we have pT ppg ˝ T qf q “ gppT f q µ-a.e.

3. If T preserves µ, then for any f P L1pµq, we have ppT f q ˝ T “ Eµrf |T´1B s µ-a.e.

Proof. 1. “positivity” means if f P L1 has f ě 0 a.e., then pT f ě 0 a.e. To see this, fix any f P L1 with f ě 0and let φ :“ 1
tpT fă0u. Note φ is bounded and hence L8. Then, we have

0 ě ż

tpT fă0u pT fdµ “
ż

φppT f qdµ “ ż

pφ ˝ T qfdµ ě 0.
This shows ş

tpT fă0u pT fdµ “ 0, and hence µtpT f ă 0u “ 0; in other words, pT f ě 0 a.e., as desired.
For boundedness, fix any f P L1 and let φ :“ signppT f q. Again, φ is bounded and hence L8. Then, by HölderInequality, we have

}pT f}L1 “
ż

φppT f qdµ “ ż

pφ ˝ T qfdµ ď }φ ˝ T }L8}f}L1 “ }f}L1 .

It follows by definition of operator norm that }pT }L1 ď 1.For linearity, let f , g P L1 and a, b P C. Then, af ` bg P L1. By Characterization of pT via ObservablesProposition 2.4, for any φ P L8, we have
ż

φppT paf ` bgqqdµ “ ż

pφ ˝ T qpaf ` bgqdµ “ a
ż

pφ ˝ T qfdµ ` b
ż

pφ ˝ T qgdµ
“a

ż

φppT f qdµ ` b
ż

φppTgqdµ “ ż

φpapT f ` bpTgqdµ.
By unique determination of the duality equation from Proposition 2.4, we conclude pT paf ` bgq “ apT f ` bpTg,as desired.To see }pT }L1 “ 1, it remains to check }pT }L1 ě 1. For this, take any f P L1 with f ą 0. Then,

}pT f}L1 “
ż

|pT f |dµ “ ż

pT fdµ “ ż

p1 ˝ T qfdµ “ }f}L1 .
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It follows again from the definition of operator norm (as a supremum) that }pT }L1 ě 1, and hence }pT }L1 “ 1, asdesired. This completes the proof of 1.For 2, fix any f P L1 and g P L8. Note g ˝ T P L8 by nonsingularity of T , and thus pg ˝ T qf P L1. Now, forany φ P L8, we have
ż

φpT ppg ˝ T qf qdµ “ ż

pφ ˝ T qpg ˝ T qfdµ “ ż

ppφgq ˝ T qfdµ “ ż

pφgqppT f qdµ.
It follows again from unique determination of the duality equation from Proposition 2.4 that pT ppg˝T qf q “ gppT f qa.e.For 3, assume µ ˝ T´1 “ µ and take f P L1, T´1E P T´1B . Then,

ż

T´1Ep
pT f q ˝ Tdµ “ ż

1T´1EppT f q ˝ Tdµ “ ż

p1E ˝ T qpppT f q ˝ T qdµ
“

ż

p1EppT f qq ˝ Tdµ “ ż

1EppT f qdT˚µ change variable
“

ż

1EppT f qdµ by invariance T˚µ “ µ

“

ż

p1E ˝ T qfdµ by duality equation applied to φ “ 1E P L8

“

ż

T´1E fdµ.
We have thus verified, by definition of conditional expectation, that ppT f q˝T “ Eµrf |T´1B s µ-a.e. This completesthe proof of 3.
2.2 Transfer Operator, Examples
Example 2.6 (Doubling Map). The doubling map T : r0, 1s Ñ r0, 1s, x ÞÑ 2x mod 1, has transfer operatorgiven by

pT f pxq “
f p x2 q ` f p x`12 q2 .

For details, see Lectures 0 and 1.
Example 2.7 (Gauss Map). The Gauss map T : r0, 1s Ñ r0, 1s, x ÞÑ 1

x ´ t 1
x u, where t¨u is the floor function,has transfer operator given by

pT f pxq “
8
ÿ

n“1
1

px ` nq2 f p 1
x ` n q.Indeed, fix any φ P L8 and note

ż 1
0 pφ ˝ T qpxqf pxqdx “

8
ÿ

n“1
ż 1

n

1
n`1

φp1x ´ nqf pxqdx
“

8
ÿ

n“1
ż 1

n

1
n`1

φpyqf p 1
y` n q

ˇ

ˇ

ˇ

ˇ

´1
py` nq2

ˇ

ˇ

ˇ

ˇ

dy change variables y “ 1
x ´ n

“

ż 1
0 φpyq

8
ÿ

n“1
1

py` nq2 f p 1
y` n qdy,

where we have used Monotone Convergence to interchange the limit and integral. The assertion then followsby unique determination of the duality equation from Proposition 2.4.
Example 2.8 (Piecewise Monotone Interval Map). Partition r0, 1s into finitely many subintervals I1, ¨ ¨ ¨ , IN .Suppose T : r0, 1s Ñ r0, 1s is such that each T |Ik , k “ 1, ¨ ¨ ¨ , N , is injective and has a C 1 extension with non-zero derivative to an ε-neighborhood of Ik . Denote by vk : T pIkq Ñ Ik the inverse branch of T on subinterval
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Ik , i.e., vk “ pT |Ik q´1. Then, the piecewise monotone interval map T has transfer operator given by
pT f “

N
ÿ

k“11T pIk q|v
1
k |f ˝ vk .

This is only a slight generalization from piecewise expanding interval maps; another way of writing this transferoperator is simply (1).
2.3 Dynamical Interpretations of Behaviors of pT
Definition 2.9 (Weak Convergence). A sequence tfnu Ď L1 is said to converge weakly to f P L1 if

ż

φfndµ Ñ ż

φfdµ, @φ P L8.

Note weak convergence is weaker than convergence in L1, in that convergence in L1 implies weak convergenceby Hölder Inequality.
Proposition 2.10 (Dynamical Interpretations of Convergence of pT nf ). 1. If pT nf converges weakly in L1 to

h
ş

fdµ for some nonzero nonnegative f P L1, then T has an acip with h being its density.

2. If pT nf converges weakly in L1 to
ş

fdµ for all f P L1, then µ is a mixing invariant probability.

3. If pT nf converges (strongly) in L1 to
ş

fdµ for some f P L1, then for this particular f , we have

|Covpf , φ ˝ T nq| :“ ˇ

ˇ

ˇ

ˇ

ż

f pφ ˝ T nqdµ ´ ż

fdµ ż φdµˇˇˇ
ˇ

ď }pT nf ´
ż

fdµ}L1}φ}L8 , @φ P L8.

Proof. 1. Assume without loss of generality that ş fdµ “ 1; otherwise, take f̃ :“ f
ş

fdµ , where ş

fdµ “ }f}L1 ‰ 0because f is nonzero and nonnegative. Now the assumption becomes pT nf converges weakly in L1 to h. Forany φ P L8, we have
ż

φhdµ “ lim
nÑ`8

ż

φpT n`1fdµ “ lim
nÑ`8

ż

pφ ˝ T qppT nf qdµ by definition of weak convergence
“

ż

pφ ˝ T qhdµ “ ż

φppThqdµ
It then follows that h “ pTh a.e. and hence

µh ˝ T´1pEq “ ż

1T´1Ehdµ “ ż

p1E ˝ T qhdµ “ ż

1EppThqdµ “ ż

1Ehdµ “ µhpEq, @E P B ;
in other words, µh “ T˚µh is an a.c. invariant measure. To see it is a probability, note

}pT nf}L1 “
ż

|pT nf |dµ “ ż

pT nfdµ “ ż

p1 ˝ T nqfdµ “ ż

fdµ “ 1.
Hence, the weak limit h has the same norm 1; in other words, µh is a probability.
2. Fix any f P L1. By 1, µ “ µ1 is an invariant probability. For mixing, note for E, F P B , we have

µpE X T´nF q “
ż

1E1T´nFdµ “ ż

1Ep1F ˝ T nqdµ “ ż

ppT n1Eq1Fdµ
Ñ

ż

p

ż

1Edµq1Fdµ “ µpEqµpF q by definition of weak convergence.
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3. Strong convergence in L1 means }pT nf ´ ş

fdµ}L1 Ñ 0. Fix φ P L8 and note
ˇ

ˇ

ˇ

ˇ

ż

f pφ ˝ T nqdµ ´ ż

fdµ ż φdµˇˇˇ
ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

ppT nf qφdµ ´ ż

p

ż

fdµqφdµˇˇˇ
ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

ppT nf ´
ż

fdµqφdµˇˇˇ
ˇ

ď }pT nf ´
ż

fdµ}L1}φ}L8 by Hölder Inequality
Ñ0.

Exercise 1.5.1. Show all eigenvalues of the transfer operator pT have modulus less than or equal to 1.

Proof. Suppose pT f “ λf for some λ P C and nonzero f P L1. Since }pT f}L1 ď }f}L1 , it follows that
|λ|}f}L1 “ }λf}L1 “ }pT f}L1 ď }f}L1 ,

and thus |λ| ď 1 because }f}L1 ‰ 0.
Exercise 1.5.2. Show that

tacip densities of T u “ th P L1pµq : h ě 0, pTh “ h,
ż

hdµ “ 1u.
Proof. pĎq If h is an acip density of T , then h P L1pµq, h ě 0 and ş

hdµ “ 1. Also, from invariance µh “ T˚µh,we deduce, for any φ P L8,
ż

ppThqφdµ “ ż

hpφ ˝ T qdµ “ ż

φ ˝ Tdµh “ ż

φdT˚µh “ ż

φdµh “ ż

hφdµ,
and therefore pTh “ h a.e.
pĚq If h P L1 has h ě 0, pTh “ h and ş

hdµ “ 1, then
µh ˝ T´1pEq “ ż

1T´1Ehdµ “ ż

p1E ˝ T qhdµ “ ż

1EppThqdµ “ ż

1Ehdµ “ µhpEq, @E P B .

We thus conclude µh is an acip.
Exercise 1.5.3. If pT has an acip, say µh, and 1 is a simple eigenvalue, i.e., dimtg P L1pµq : pTg “ gu “ 1,
then the acip µh is unique and ergodic.

Proof. If µg is another acip, then by Exercise 1.5.2, we have pTg “ g. Since 1 is a simple eigenvalue, it followsthat g “ h and hence µh is the unique acip.To see ergodicity, suppose the contrary. Then, µh can be written as a nontrivial convex combination
µh “ tν1 ` p1´ tqν2,where t P p0, 1q and ν1, ν2 are two distinct invariant probabilities. Since µh is a.c., it follows that both ν1, ν2are a.c. as well. Then, their Radon-Nikodym derivatives dν1dµ and dν2dµ are two linearly independent vectors in

tg P L1pµq : pTg “ gu, contradicting the simplicity of eigenvalue 1.
Exercise 1.5.4. If pT has an acip, say µh, and 1 is a simple eigenvalue, and all other eigenvalues have
modulus strictly less than 1, then the acip µh is weak mixing, i.e.,

lim
nÑ`8

1
n

n´1
ÿ

i“0 |µpT
´iE X F q ´ µpEqµpF q| “ 0, @E, F P B .
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Exercise 1.5.5. If µ is a mixing invariant probability, then pT has exactly one eigenvalue on the unit circle,
equal to 1, and this eigenvalue is simple.

Proof. Suppose λ P C is an eigenvalue of pT . We know already that |λ| ď 1, and now want to show that either
λ “ 1 or |λ| ă 1.Since λ is an eigenvalue, there is some nonzero f0 P L1 with pT f0 “ λf0.It follows from the definition of mixing that

ż

φppT k f qdµ “ ż

pφ ˝ T kqfdµ kÑ`8
ÝÝÝÝÑ

ż

φdµ ż fdµ “ ż

φp
ż

fdµqdµ, @φ P L8, f P L1;
in other words, pT k f converges weakly in L1 to ş

fdµ for any f P L1. In particular, by taking f “ f0 P L1 and
φ “ signpf0q P L8, we have

λk}f0}L1 “ λk
ż

|f0|dµ “ ż

φpλk f0qdµ “ ż

φppT k f0qdµ kÑ`8
ÝÝÝÝÑ

ż

φdµ ż f0dµ.
Since f0 is nonzero, it follows that }f0}L1 ą 0, and hence the convergence of sequence tλk}f0}L1u implies either
λ “ 1 or |λ| ă 1.
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3 2021.1.20 Meeting 3: Sarig L2, Quasi-compactness & Spectral Gap
To analyze the asymptotics of pT nf for “nice” f , we study in this section some spectral properties of operator pT .Let pL, } ¨ }u be a Banach space, i.e., L is a linear space with a norm } ¨ } that induces a complete topology on
L. Let L : L Ñ L a bounded linear operator; “bounded” means that the operator norm of L is finite

}L} :“ sup0‰vPL

}Lv}
}v} ă `8.

Lemma 3.1 (Bounded/Continuous Linear Operators). A linear operator L : L Ñ L on normed linear space L is
bounded if and only if it is continuous.

Proof. pñq Let tvnun Ď L be a sequence converging to some v P L. Then,
}Avn ´ Av} “ }Apvn ´ vq} ď }A}}vn ´ v} Ñ 0.

pðq By definition of continuity, for ε “ 1 and at point 0 P L, there is some δ ą 0 for which
}v} “ }v ´ 0} ď δ ñ }Av} “ }Av ´ A0} ď 1.

Take any w P L. Then, ››
›

δ
}w}w

›

›

›
“ δ , and hence 1 ě ›

›

›
A
´

δ
}w}w

¯
›

›

›
“ δ
}w}}Aw}, which implies

}Aw} ď 1
δ }w}, @w P L.

We conclude }A} ď 1
δ . This completes the proof.

Definition 3.2 (Eigenvalue, Eigenvector, Spectrum and Spectral Radius). We say λ P C is an eigenvalue of L if
D nonzero v P L : Lv “ λv.

In this case, we say the nonzero vector v is an eigenvector corresponding to eigenvalue λ.We define the spectrum of L to be
specpLq :“ tλ P C : pλI ´ Lq has no bounded inverseu,

and the spectral radius of L to be
ρpLq :“ supt|z| : z P specpLqu.

Note any eigenvalue of L is necessarily an element of the spectrum specpLq, and the converse holds when theBanach space L is finite dimensional. If dimpLq “ `8, however, there may be points in the spectrum specpLqwhich are not eigenvalues of L. For an explicit example, see http://www-users.math.umn.edu/~garrett/
m/fun/notes_2012-13/06b_examples_spectra.pdf.The definition of the spectrum specpLq seems to depend not only on the linear space L but also on the norm
} ¨ }. Under a different norm } ¨ }1 on L, would the operator L have a different spectrum? That is, could there bea value λ P C for which pλI ´ Lq has a bounded inverse with respect to norm } ¨ } but pλI ´ Lq has no boundedinverse with respect to norm } ¨ }1?The answer is no4, as long as the new norm } ¨ }1 still induces a complete topology on L and makes L remaina bounded operator, i.e., }L}1 ă `8. This is the case when } ¨ }1 is equivalent to } ¨ }. Here is why.

4Is there an example where changing the norm on a Banach space L makes the space no longer complete and/or the linear operator
L no longer bounded, to the effect that the spectrum specpLq also changes??? This is of course a rather pathological situation and notthe kind of things people usually do to obtain a spectral gap. Usually one tries to find a smaller invariant and closed subspace L0 Ď Lfor L to act on. To prove spectral gap on L0 , changing of norm is allowed (convenient or necessary) but the new norm must satisfy somedomination property (e.g. equivalence to the old norm) in order to preserve the spectrum under the two norms.
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Proposition 3.3. For a bounded linear operator L : L Ñ L on a Banach space L, we have

specpLq “ tλ P C : pλI ´ Lq has no inverseu.

This is a consequence of the Open Mapping Theorem.
Theorem 3.4 (Open Mapping Theorem; [Con85] Chapter III Theorem 12.1 ). If X , Y are Banach spaces and
L : X Ñ Y is a bounded linear surjection, then L maps open sets into open sets.

Corollary 3.5. If L : L Ñ L is an invertible bounded linear operator on Banach space L, then its inverse L´1
is also a bounded linear operator.

Proof of Proposition 3.3. Note I and L are both bounded linear operators, and therefore so is pλI´Lq. If pλI´Lqhas an inverse, then by the corollary to Open Mapping Theorem, its inverse is necessarily bounded.From Functional Analysis, we know
ρpLq “ lim

nÑ`8
n
a

}Ln} “ inf
n

n
a

}Ln} ď }L},

for any equivalent norm } ¨ } on Banach space L; cf. [Con85] Chapter VII Section 3.In particular, 1
n log }Ln} “ log n

a

}Ln} Ó log ρpLq, that is, for any ε ą 0, there is Npεq for which n ě Npεqimplies 1
n log }Ln} ď ε ` log ρpLq, or equivalently,

}Ln} ď enερpLqn.

In other words, for any ε ą 0, we have
}Lnv}
}v} “ OpenερpLqnq uniformly on Lzt0u. (2)

Proposition 3.6. If Banach space L has a direct sum decomposition L “ L1 ‘ L2 into two closed L-invariant
linear subspaces L1, L2, then the spectrum specpLq of a bounded linear operator L : L Ñ L can be written as

specpLq “ specpL|L1q Y specpL|L2q.
Proof. Since the linear subspaces L1 and L2 are closed, they are also Banach spaces, and so the spectra ofrestrictions L|L1 and L|L2 are defined. We claim any bounded linear operator A : L Ñ L on a Banach space Lhas no (bounded) inverse if and only if at least one of A|Li : Li Ñ Li, i “ 1, 2 has no (bounded) inverse. Theassertion then is a consequence of the claim applied to A “ λI ´ L.
pñq If A|Li : Li Ñ Li, i “ 1, 2 both have bounded inverses pA|Liq

´1 : Li Ñ Li, i “ 1, 2, then the inverse of
A : L Ñ L is given by

A´1v :“ pA|L1q´1v1 ` pA|L2q´1v2, v “ v1 ` v2, vi P Li.

pðq WOLOG suppose A|L1 : L1 Ñ L1 has no (bounded) inverse. Then, Av1 “ A|L1v1 “ 0 for some v1 P
L1zt0u Ď Lzt0u, and hence A is not invertible, or equivalently, A has no (bounded) inverse. This proves theclaim and hence the proposition.
3.1 Spectral Gap
Definition 3.7 (Spectral Gap). We say bounded linear operator L : L Ñ L on Banach space L has a spectral
gap if

L “ λP `N,where1. P is a projection, i.e., idempotent P2 “ P . Also, dimpImpPqq “ 1;2. N is a bounded linear operator on L with ρpNq ă |λ|;
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3. PN “ NP “ 0.Note commutativity condition 3 implies that
L2 “ pλP `NqpλP `Nq “ λ2P2 ` λNP ` λPN `N2 “ λ2P `N2,

and by induction,
Ln “ λn `Nn.Condition 2 then yields

}Lnv ´ λnPv} “ }Nnv} “ op|λ|nq, @v P L,where we have used (2) with ε ą 0 so small that ρpNq ` ε ă |λ|.Hence, if L has a spectral gap, then
λ´nLnv nÑ`8

ÝÝÝÝÑexp. Pv.

Figure 5: Left shows the one-dimensional ImpPq in Banach space L. Right shows the spectral gap in thecomplex plane between the dominant eigenvalue λ and the rest specpLqztλu “ specpNq inside a strictly smallerdisk.
Proposition 3.8 (Explanation of the name “spectral gap”; Ex 2.1). If L has a spectral gap, then λ is a simple
eigenvalue and there is a “gap” γ0 ą 0 such that

specpLqztλu Ď t|z| ď e´γ0 |λ|u.
Proof. To see λ is an eigenvalue, for which every nonzero v P ImpPq is a corresponding eigenvector, note

LpPvq “ pλP `NqpPvq “ λP2v `NPv “ λpPvq, @v P L.

Since dimpImpPqq “ 1 by assumption, it follows that there are such v P ImpPq and all of them are eigenvectorsof L corresponding to λ.To see λ is simple, we show every eigenvector corresponding to λ belongs to the one-dimensional subspaceImpPq. Indeed, if Lv “ λv , then
λ´nLnv “ v ÝÝÝÝÑ

nÑ`8
Pv,

which implies that v “ Pv P ImpPq. Together with the above, we conclude simplicity of λ via
tv P L : Lv “ λvu “ ImpPq.

Now suppose z P C has |z| ą ρpNq and z ‰ λ.
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(a) The equation pzI´Lqv “ w has a solution v P ImpPq if and only if w P ImpPq; in this case, v “ pz´λq´1wis the unique solution in ImpPq.Indeed, write v P ImpPq as v “ Pv 1 for some v 1 P L, and the equation becomes
w “ pzI ´ Lqv “ pzI ´ LqPv 1 “ zPv 1 ´ pλP `NqPv 1 “ zPv 1 ´ λPv 1 “ pz ´ λqPv 1 “ pz ´ λqv,

which has a solution if and only if w P ImpPq; in this case, v “ pz ´ λq´1w is the unique solution inImpPq, as desired.(b) The same equation pzI ´ Lqv “ w always has a unique solution in KerpPq, given by v “ pzI ´Nq´1w .Indeed, for v P KerpPq, the equation becomes
w “ pzI ´ Lqv “ zv ´ pλP `Nqv “ zv ´ λPv ´Nv “ pzI ´Nqv.

But |z| ą ρpNq implies that pzI ´ Nq has a bounded inverse, and so v “ pzI ´ Nq´1w is the uniquesolution in KerpPq.(c) For any v P L, we have Pv P ImpPq and pI ´ Pqv P KerpPq.Indeed, PpI ´ Pqv “ Ppv ´ Pvq “ Pv ´ P2v “ 0.(d) pzI ´ Lq has a bounded inverse on L, given by
pzI ´ Lq´1 “ pz ´ λq´1P ` pzI ´Nq´1pI ´ Pq.

Note P “ λ´1pL´Nq is a bounded linear operator, and pI ´ Pq is as well because
}pI ´ Pqv} “ }v ´ Pv} ď }v} ` }Pv} “ p1` }P}q}v}.

It follows that the expression above indeed defines a bounded5 linear operator on L.To see it is the inverse of pzI ´ Lq, we show
v “ pz ´ λq´1Pw ` pzI ´Nq´1pI ´ Pqw

is the unique solution in L to equation pzI ´ Lqv “ w .Write w “ Pw `pI´Pqw . On one hand, v1 “ pz´ λq´1Pw is the unique solution in ImpPq to equation
pzI ´ Lqv1 “ Pw , by (a). On the other hand, v2 “ pzI ´ Nq´1pI ´ Pqw is the unique solution in L toequation pzI ´ Lqv2 “ pI ´ Pqw , by (b). Therefore, v “ v1 ` v2 solves equation

pzI ´ Lqv “ pzI ´ Lqv1 ` pzI ´ Lqv2 “ Pw ` pI ´ Pqw “ w.

For uniqueness, suppose v 1 P L is another solution, that is,
pzI ´ Lqv 1 “ w “ pzI ´ Lqv.

Applying operator P to both sides of the equality yields
zPv 1 ´ PpλP `Nqv 1 “ PpzI ´ Lqv 1 “ Pw “ PpzI ´ Lqv “ zPv ´ PpλP `Nqv

and so
pz ´ λqPv 1 “ pz ´ λqPv,which implies

Pv 1 “ Pv.Now pzI´Lqv 1 “ pzI´Lqv becomes zv´λPv 1´Nv 1 “ zv´λPv´Nv , and hence pzI´Nqv 1 “ pzI´Nqv .By invertibility of pzI ´Nq, we conclude uniqueness v 1 “ v . This completes the proof of (d).
5Another way to prove boundness is by Open Mapping Theorem [Con85] Chapter III Theorem 12.1: If X and Y are Banach spaces and

A : X Ñ Y is a continuous linear surjection, then A is an open map.Indeed, once we prove pzI ´ Lq is invertible on L (it is also bounded/continuous because I and L are), it then follows from the OpenMapping Theorem that pzI ´ Lq is an open map, and hence its inverse pzI ´ Lq´1 is continuous/bounded.
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To find γ0, note (3d) implies that any z P C with |z| ą ρpNq and z ‰ λ cannot belong to the spectrum specpLq.In particular, specpLqztλu Ď t|z| ď ρpNqu.Hence, by taking 0 ă γ0 ď log |λ| ´ log ρpNq,we have found the required gap.
Remark 3.9. Sarig’s definition of spectral gap is less intuitive than Climenhagas’s, but allows any dominanteigenvalue λ, and requires that it be the unique one on the circle passing through it, and that it be simple.In the example of the doubling map T : x ÞÑ 2x mod 1, we considered the action of its transfer operator pT onthe space Lip of Lipschitz functions. We saw pictorially that pT : Lip Ñ Lip has a spectral gap. Now we canverify it under Sarig’s definition by writing

pT “ 1P `N,where
Pψ :“ ż

ψdx, Nψ :“ pT ψ̂ “ pT pψ ´
ż

ψdxq.
1. Clearly, P “ P2 is idempotent and ImpPq “ C1 is the one-dimensional (invariant) eigenspace of pT : LipÑLip corresponding to the dominant eigenvalue λ “ 1. Also, H is invariant because

ż

ψ̂ “ 0 ñ

ż

pT ψ̂dLeb “ ż

p1 ˝ T qψ̂dLeb “ ż

ψ̂dLeb “ 0,
and so pT pHq Ď H . Again, C1 is closed because it has finite dimension 1, and H “ ImpNq is closed for beingthe image of a bounded linear operator with finite codimension.
2. We showed that |Nψ|Lip “ |pT ψ̂|Lip ď 12 |ψ̂|Lip “ 12 |ψ|Lip. Since | ¨ |Lip and } ¨ }Lip “ | ¨ |Lip ` } ¨ }L8 areequivalent norms on H , it follows that N is a bounded linear operator on H , with spectral radius

ρpNq ď |N|Lip ď 12 ă 1 “ |1|.
3. It is easy to verify that

PNψ “
ż

ppT pψ ´
ż

ψdxqqdx “ ż

pTψdx ´ ż

ψdx “ ż

p1 ˝ T qψdx ´ ż

ψdx “ 0, @ψ P Lip,
and

NPψ “ pT p
ż

ψdx ´ ż

p

ż

ψdxqdxq “ pT0 “ 0, @ψ P Lip.
3.2 Quasi-compactness
Definition 3.10 (Quasi-compactness). A bounded linear operator L : L Ñ L on a Banach space L is called
quasi-compact if there are a direct sum decomposition L “ F ‘ H and a constant ρ P p0, ρpLqq such that1. F and H are closed and L-invariant, i.e., LpF q Ď F and LpHq Ď H;2. dimpF q ă `8 and every eigenvalue λ of L|F : F Ñ F has modulus |λ| ą ρ;3. ρpL|Hq ă ρ.
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Figure 6: Quasi-compactness is weaker than the spectral gap in that it allows multiple (finitely many) eigen-values of the same largest modulus in the complex plane.
Remark 3.11 (Quasi-compactness is weaker than spectral gap). If L has a spectral gap, then L is quasi-compact.Indeed, suppose L has a spectral gap. Then, decomposition

L “ ImpPq ‘ ImpI ´ Pq

and any constant ρ P pρpNq, |λ|q satisfy the requirement in the definition of quasi-compactness.Note any v P L can be written as v “ Pv`v´Pv “ Pv`pI´Pqv , where Pv P ImpPq and pI´Pqv P ImpI´Pq.To see the sum is direct, suppose v P ImpPq X ImpI ´ Pq. Then, v “ Pv1 “ pI ´ Pqv2 for some v1, v2 P L, andhence
v “ Pv1 “ P2v1 “ PpPv1q “ Pv “ PpI ´ Pqv2 “ Pv2 ´ P2v2 “ 0.1. ImpPq is closed because dimpImpPqq “ 1 and every finite-dimensional linear subspace is closed. It isalso L-invariant because for any Pv P ImpPq, we have

LpPvq “ pλP `NqPv “ λP2v `NPv “ λPv P ImpPq.
ImpI ´Pq is closed because pI ´Pq “ pI ´ λ´1pL´Nqq is a bounded linear operator and ImpI ´Pq hascodimension codimpImpI´Pqq “ dimpI´ Pq “ 1.6 It is also L-invariant because for any v´Pv P ImpI´Pq,we have

Lpv ´ Pvq “ Lv ´ LPv “ Lv ´ PLv “ pI ´ PqpLvq P ImpI ´ Pq,where we have used commutativity
LP “ pλP `NqP “ λP2 `NP “ λP2 “ λP2 ` PN “ PpλP `Nq “ PL.

2. dimpImpPqq “ 1 ă `8 and L|ImpPq has exactly one eigenvalue λ, with |λ| ą ρ by construction.3. By (3d) in Proposition 3.8, we have
specpL|ImpI´Pqq Ď specpLqztλu Ď t|z| ď ρpNqu,

and hence
ρpL|ImpI´Pqq ď ρpNq ă ρ.

Hence, spectral gap is a special case of the weaker notion of quasi-compactness.
Proposition 3.12 (Quasi-compactness and Spectral Gap; Ex 2.2). If L : L Ñ L is a quasi-compact linear
operator on Banach space L, L has a unique eigenvalue λ on the circle tz P C : |z| “ ρpLqu, and λ is simple,
then L has a spectral gap.

6According to Pietro Majer’s answer https://mathoverflow.net/q/30881, it is a consequence of the Open Mapping Theorem thata linear subspace in a Banach space, of finite codimension, and which is the image of a Banach space via a linear bounded operator, isclosed.
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Proof. Let nonzero v1 P L be an eigenvector corresponding to λ. Then, v1 P F and decompose F into
F “ spanpv1q ‘ H2,

where H2 is a finite-dimensional linear subspace with LpH2q Ď H2 and ρpL|H2q ă |λ| because λ is the onlyeigenvalue on the circle tz P C : |z| “ ρpLqu and because λ is simple.Put
H 1 :“ H2 ‘ H.Then, H 1 is a closed linear subspace with LpH 1q Ď H 1 and ρpL|H1q ă |λ|. Define

P :“ π1, N :“ L ˝ π2,where π1 : L Ñ spanpv1q is the projection to spanpv1q and π2 : L Ñ H 1 is the projection to H 1.Note any v P L can be uniquely written as v “ π1pvq`π2pvq “ av1` v2 for some scalar a and vector v2 P H 1.So
Lv “ Lpav1 ` v2q “ λav1 ` Lv2 “ λPv ` pL ˝ π2qv, @v P L.This shows

L “ λP `N.Now let us check this decomposition satisfies the three conditions of spectral gap:1. P “ π1 is a projection, that is, P2 “ π21 “ π1 “ P and ImpPq “ Impπ1q “ spanpv1q, so dimpImpPqq “ 1;2. N “ L ˝ π2 is a bounded linear operator with }N} “ }L ˝ π2} ď }L} and spectral radius
ρpNq “ ρpL ˝ π2q “ ρpL|H1q ă |λ|.

3. PNv “ π1pLpπ2vqq “ 0 for any v P L because π2v P H 1 implies Lpπ2vq P H 1 by invariance and hence
PNv “ 0 because the sum is direct. Similarly, NPv “ Lpπ2pπ1vqq “ 0 for any v P L. This shows
PN “ NP “ 0.We have shown that L has a spectral gap.

Proposition 3.13 (Ex 2.3). Let pT be the transfer operator of a nonsingular map pT , X, B , µq. Suppose there is
a linear subspace L Ď L1pµq with norm } ¨ }L ě } ¨ }L1 such that

1. pL, } ¨ }Lq is a Banach space;

2. pT pLq Ď L;

3. pT : L Ñ L is quasi-compact.

If T has mixing acip density h P L, then pT has a spectral gap on L with λ “ 1 and Pf “ h
ş

fdµ.

Proof. Since T has mixing acip, it follows from Exercise 1.5.5 that pT has exactly one eigenvalue on the unitcircle, equal to 1, and 1 is simple. Together with quasi-compactness of pT on L, it follows from Proposition 3.12that pT has a spectral gap on L with λ “ 1.To verify the action of projection Pf “ h
ş

fdµ, we note P2f “ Pph
ş

fdµq “ h
ş

ph
ş

fdµqdµ “ h
ş

fdµ “ Pfbecause h is a density. Also, ImpPq “ spanphq has one dimension. But this only verifies that this action of Pis consistent with the requirements.To determine the action of projection P in decomposition pT “ λP ` N , we know from requirement ImpPq “
tf P L1 : pT f “ fu “ spanphq that Pf “ apf qh for some scalar apf q. This functional a : L1 Ñ C mustsatisfy aphq “ 1 and must be a bounded linear functional. The integral functional apf q “ ş

fdµ of coursesatisfies this requirement, but there may be others that are also admissible. Question: Is P unique? Or is the
representation L “ λP `N unique??why is it important that } ¨ }L ě } ¨ }L1???
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4 2021.1.27 Meeting 4: Sarig L2 continued, Application of Hennion’s
Theorem in Continued Fractions

4.1 Sufficient Conditions for Quasi-compactness; Hennion’s Theorem
The transfer operator pT generally does not have a spectral gap on L1. So we need to find a smaller pT -invariantBanach subspace L Ď L1 with norm } ¨ }L ě } ¨ }L1 such that pT |L : L Ñ L has a spectral gap. This will giveinformation on pT nf for f P L.
Theorem 4.1 (Doeblin-Fortet; Ionescu-Tulcea-Marinescu; Hennion). Suppose pL, } ¨ }q is a Banach space and
L : L Ñ L is a bounded linear operator with spectral radius ρpLq. Assume there exists a semi-norm } ¨ }1 on L
such that

1. Continuity: L Ñ R, v ÞÑ }v}1 is a continuous function;

2. Precompactness: for any sequence tfnu Ď L, if sup }fn} ď `8, then there is a subsequence nk and
g P L such that

}Lfnk ´ g}1 kÑ`8
ÝÝÝÝÑ 0;

3. Boundedness:
DM ą 0,@f P L : }Lf}1 ď M}f}1;

4. Doeblin-Fortet Inequality: there are k ě 1 , r P p0, ρpLqq, R ą 0 such that

}Lk f} ď rk}f} ` R}f}1, @f P L.

Then, L : L Ñ L is quasi-compact.We will prove this theorem in the next lecture. In this lecture, we present an application to continued fractions.
4.2 Application to Continued FractionsEvery irrational number x P r0, 1szQ has a unique continued fraction representation as

x “ 1
a1pxq ` 1

a2pxq`¨¨¨
, aipxq P N.

We will be interested in the asymptotic distribution of anpxq for large n.
Theorem 4.2 (Gauss; Kuzmin; Lévy). For every natural number N,

Lebtx P r0, 1s : an`1pxq “ Nu exp.
ÝÝÝÝÑ
nÑ`8

1ln 2 ln `1` 1
N
˘

ln´1` 1
N`1

¯ .

Proof. We will use the Gauss map
T : r0, 1s Ñ r0, 1s, x ÞÑ 1

x mod 1.
Note for any x P r0, 1szQ, we have

Tx “ 1
x mod 1 “ a1pxq ` 1

a2pxq ` ¨ ¨ ¨ mod 1 “ 1
a2pxq ` ¨ ¨ ¨and induction gives

T nx “ 1
an`1pxq ` 1

an`2pxq`¨¨¨
.
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It then follows that
an`1pxq “ N ðñ T nx P

ˆ 1
N ` 1 , 1

N

˙

,

and therefore
Lebtx P r0, 1szQ : an`1pxq “ Nu “

ż

1p 1
N`1 , 1

N q
˝ T npxqdx “ ż

ppT n1q1p 1
N`1 , 1

N q
“

ż 1
N

1
N`1
ppT n1qpxqdx.

GOAL: Find a Banach space L Ď L1 on which pT is quasi-compact and } ¨ }L ě } ¨ }L1Then, the fact that Gauss map T has a mixing acip density
hpxq “ 1ln 2 11` x

(we will prove this fact in the next lecture), together with Exercise 2.3, yields that pT has a spectral gap on Lwith λ “ 1 and Pf “ h
ş

fdµ for f P L. This implies
pT n1 “ λ´npT n1 exp. in L

ÝÝÝÝÝÑ
nÑ`8

P1 “ h.

But } ¨ }L ě } ¨ }L1 and hence
}pT n1´ h}L1 ď }pT n1´ h}L

exp.
ÝÝÝÝÑ
nÑ`8

0.
We thus conclude
Lebtx P r0, 1szQ : an`1pxq “ Nu “

ż 1
N

1
N`1
ppT n1qpxqdx exp.

ÝÝÝÝÑ
nÑ`8

ż 1
N

1
N`1

hpxqdx “ ż 1
N

1
N`1

1ln 2 11` x dx “ 1ln 2 ln `1` 1
N
˘

ln´1` 1
N`1

¯ ,

as required.To accomplish the goal, we follow two steps.
Step I: Find the Banach space L. Take linear space

L “ tLipschitz functions f : r0, 1s Ñ Cu Ď L1,
normed by

}f} :“ }f}L8 ` Lippf q, Lippf q :“ sup
x‰y

|f pxq ´ f pyq|
|x ´ y| .

Then, pL, } ¨ }q is a Banach space. For this, take a Cauchy sequence tfnun Ď L, and we show it convergesto some f P L. Note Cauchy in L implies Cauchy in L8 and hence Cauchy in L1. Since L1 is complete, thesequence tfnun converges in L1-norm to some f P L1. Check completeness, namely convergence in } ¨ }-norm.
Lemma 4.3 (Exercise 2.4). 1. If f .g P L, then }f ¨ g} ď }f}}g};

2. If a ě 1, then
›

›

›

1
pa`xq2

›

›

›
ď 3

a2 ;

3. If f P L and a ě 1, then
›

›

›
f
´ 1
a`x

¯
›

›

›
ď }f}.
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Proof. 1.

}f ¨ g} “}f ¨ g}L8 ` Lippf ¨ gq “ max
x
|f pxqgpxq| ` sup

x‰y

|f pxqgpxq ´ f pyqgpyq|
|x ´ y|

ďmax
x
|f pxq|max

x
|gpxq| ` sup

x‰y

|f pxqgpxq ´ f pxqgpyq| ` |f pxqgpyq ´ f pyqgpyq|
|x ´ y|

ď}f}L8}g}L8 ` sup
x‰y

|f pxq||gpxq ´ gpyq|
|x ´ y| ` sup

x‰y

|gpyq||f pxq ´ f pyq|
|x ´ y|

ď}f}L8}g}L8 ` max
x
|f pxq| sup

x‰y

|gpxq ´ gpyq|
|x ´ y| ` max

y
|gpyq| sup

x‰y

|f pxq ´ f pyq|
|x ´ y|

“}f}L8}g}L8 ` }f}L8Lippgq ` }g}L8Lippf q
ď}f}L8p}g}L8 ` Lippgqq ` p}g}L8 ` LippgqqLippf q “ }f}}g}

2. Note x ÞÑ 1
pa`xq2 is decreasing and hence realizes maximum value at x “ 0 on r0, 1s, so maxx 1

pa`xq2 “ 1
a2 .Also, px, yq ÞÑ |x`y`2a|

pa`xq2pa`yq2 has no critical points on r0, 1s2 and hence achieves maximum at boundaries, namely,when x “ y “ 0, the maximal value is 2
a3 . Now we compute

›

›

›

›

1
pa` xq2

›

›

›

›

“max
x

1
pa` xq2 ` sup

x‰y

ˇ

ˇ

ˇ

1
pa`xq2 ´ 1

pa`yq2
ˇ

ˇ

ˇ

|x ´ y| “
1
a2 ` sup

x‰y

1
|x ´ y|

|pa` yq2 ´ pa` xq2|
pa` xq2pa` yq2

“
1
a2 ` sup

x‰y

|x ` y` 2a|
pa` xq2pa` yq2 “ 1

a2 ` 2
a3 ď 3

a2 .

3. Note Lipp 1
a`x q “ supx‰y | 1

a`x´
1

a`y |
|x´y| “ supx‰y 1

|a`x||a`y| “
1
a2 because a ě 1 ą 0. Now we compute

›

›

›

›

f
ˆ 1
a` x

˙
›

›

›

›

“ sup
x

ˇ

ˇ

ˇ

ˇ

f
ˆ 1
a` x

˙
ˇ

ˇ

ˇ

ˇ

` Lippf p 1
a` x qq ď sup

x
|f pxq| ` Lippf qLipp 1

a` x q

“}f}L8 ` Lippf q 1
a2 ď }f}L8 ` Lippf q because a ě 1.

This completes the proof of the three estimates in Lemma 4.3.
Recall from Exercise 1.3 that the transfer operator pT of the Gauss map T is given by

pT f pxq “
8
ÿ

a“1
1

pa` xq2 f
ˆ 1
a` x

˙

.

By Lemma 4.3, we have
}pT f} “

›

›

›

›

›

8
ÿ

a“1
1

pa` xq2 f
ˆ 1
a` x

˙

›

›

›

›

›

“

8
ÿ

a“1
›

›

›

›

1
pa` xq2

›

›

›

›

›

›

›

›

f
ˆ 1
a` x

˙
›

›

›

›

ď

8
ÿ

a“1
3
a2 }f}.

This shows pT pLq Ď L and }pT } ď ř8

a“1 3
a2 ; hence pT is a bounded linear operator on Banach space pL, } ¨ }q.

Step II: Verify conditions of Hennion’s Theorem 4.1 for (semi-)norm } ¨ }1 “ } ¨ }L1 on Banach space pL, } ¨ }q.1. Continuity. Let sequence tfnun Ď L converge in }¨}-norm to some f P L. Then, }fn´f}L8 ď }fn´f} Ñ 0and hence the sequence tfnun converges to f in L1-norm. Therefore,
}fn}1 ” }fn}L1 Ñ }f}L1 ” }f}1.

2. Precompactness. Let sequence tfnun Ď L be such that supn }fn} ă `8. Then, on one hand, wehave supn }fn}L8 ă `8 and hence tfnun is uniformly bounded; on the other hand, we also have
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supn Lippfnq ă `8 and hence tfnun is uniformly equicontinuous. According to Arzela-Ascoli Theorem,there is a subsequence tfnk uk uniformly convergent to some function f : r0, 1s Ñ C with
Lippf q ď sup

n
Lippfnq ă `8.

This shows f P L. Uniform convergence is equivalent to convergence in L8, which implies convergencein L1, and hence
}fnk ´ f}L1 kÑ`8

ÝÝÝÝÑ 0.Since pT is a bounded operator on L1, it follows that
}pT fnk ´ pT f}1 ” }pT fnk ´ pT f}L1 kÑ`8

ÝÝÝÝÑ 0.
Note pT f P L because f P L and pT pLq Ď L.3. Boundedness.

}pT f}1 ” }pT f}L1 ď }f}L1 ” }f}1.
4. Doeblin-Fortet Inequality. We first prove a lemma.

Lemma 4.4 (Exercise 2.5). For each a P N, define

vapxq :“ 1
a` x , x P r0, 1s,

their compositions
va1,¨¨¨ ,an :“ van ˝ ¨ ¨ ¨ ˝ va1 .

(a) For any f P L1,
pT nf “

8
ÿ

a1,¨¨¨ ,an“1 |v
1
a1,¨¨¨ ,an |f ˝ va1,¨¨¨ ,an .

(b) There are constants C ą 0 and θ P p0, 1q such that for any string a :“ a1 ¨ ¨ ¨an of any length
n ě 1, we have

|vapxq ´ vapyq| ă Cθn|x ´ y|.

(c) There is a constant H ą 1 such that for any x, y P r0, 1s and any string a :“ a1 ¨ ¨ ¨an of any length
n ě 1, we have

ˇ

ˇ

ˇ

ˇ

v 1apxq
v 1apyq

´ 1ˇˇˇ
ˇ

ď H|x ´ y|.

(d) There is another constant G ą 1 such that for any x P r0, 1s and any string a :“ a1 ¨ ¨ ¨an of any
length n ě 1, we have

G´1Lebpvar0, 1qq ď |v 1apxq| ď GLebpvar0, 1qq.
(e) var0, 1q are non-overlapping sub-intervals of r0, 1q.

Proof of (a). Base Case n` 1.

8
ÿ

a1“1 |v
1
a1pxq|f pva1pxqq “

8
ÿ

a1“1
ˇ

ˇ

ˇ

ˇ

´1
pa1 ` xq2

ˇ

ˇ

ˇ

ˇ

f
ˆ 1
a1 ` x

˙

“ pT f pxq.
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Assume for n and show for n` 1.

pT n`1f pxq “ pT nppT f qpxq “
8
ÿ

a1,¨¨¨ ,an“1 |v
1
a1,¨¨¨ ,anpxq|ppT f q ˝ va1,¨¨¨ ,anpxq

“

8
ÿ

a1,¨¨¨ ,an“1 |v
1
anpva1,¨¨¨ ,an´1pxqq||v 1an´1pva1,¨¨¨ ,an´2pxqq| ¨ ¨ ¨ |v 1a1pxq|

8
ÿ

an`1“1
1

pan`1 ` va1,¨¨¨ ,anpxqq2 f
ˆ 1
an`1 ` va1,¨¨¨ ,anpxq

˙

“

8
ÿ

a1,¨¨¨ ,an`1“1 |v
1
anpva1,¨¨¨ ,an´1pxqq||v 1an´1pva1,¨¨¨ ,an´2pxqq| ¨ ¨ ¨ |v 1a1pxq|

|v 1an`1pva1,¨¨¨ ,anpxqq|f pva1,¨¨¨ ,anpxqq
“

8
ÿ

a1,¨¨¨ ,an`1“1 |v
1
a1,¨¨¨ ,an`1pxq|f ˝ va1,¨¨¨ ,an`1pxq

This completes the induction and proves point (a).
Proof of (b). and the rest...Now we use the lemma to verify Doeblin-Fortet Inequality. First, we estimate LipppT nf q.

|ppT nf qpxq ´ ppT nf qpyq| “
ÿ

a
|v 1apxq|f pvapxqq ´ |v 1apyq|f pvapyqq

ď
ÿ

a

ˇ

ˇ|v 1apxq|f pvapxqq ´ |v 1apyq|f pvapxqq
ˇ

ˇ`
ˇ

ˇ|v 1apyq|f pvapxqq ´ |v 1apyq|f pvapyqq
ˇ

ˇ

“
ÿ

a

ˇ

ˇ|v 1apxq| ´ |v 1apyq|
ˇ

ˇ ¨ |f pvapxqq| ` |v 1apyq| ¨ |f pvapxqq ´ f pvapyqq|

ď
ÿ

a

ˇ

ˇv 1apxq ´ v 1apyq
ˇ

ˇ ¨ |f pvapxqq| ` |v 1apyq| ¨ |f pvapxqq ´ f pvapyqq|

ď
ÿ

a
|v 1apyq| ¨

ˇ

ˇ

ˇ

ˇ

v 1apxq
v 1apyq

´ 1ˇˇˇ
ˇ

¨ |f pvapxqq| ` }v 1a}L8 ¨ Lippf q|vapxq ´ vapyq|

For any Lipschitz function f : J Ñ C on interval J , we have the diameter of its range bounded by
diampf pJqq ď Lippf qLebpJq,

and the mean value is realized at some point x0 P J1LebpJq
ż

J
|f ptq|dt “ f px0qdt P f pJq.

It then follows that
|f pxq| ď 1LebpJq

ż

J
|f ptq|dt ` Lippf qLebpJq, @x P J.
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We continue the estimates for LipppT nf q.
|ppT nf qpxq ´ ppT nf qpyq| ď

ÿ

a
|v 1apyq| ¨

ˇ

ˇ

ˇ

ˇ

v 1apxq
v 1apyq

´ 1ˇˇˇ
ˇ

¨ |f pvapxqq| ` }v 1a}L8 ¨ Lippf q|vapxq ´ vapyq|

ď
ÿ

a
GLebpvar0, 1qq ¨ H|x ´ y| ¨

˜ 1Lebpvar0, 1qq
ż

var0,1q |f ptq|dt ` Lippf qLebpvar0, 1qq¸
` GLebpvar0, 1qq ¨ Lippf qCθn|x ´ y|

“
ÿ

a
GH|x ´ y|

ż

var0,1q |f ptq|dt `ÿ

a
GLebpvar0, 1qq ¨ H|x ´ y|Lippf qLebpvar0, 1qq

`
ÿ

a
GLebpvar0, 1qq ¨ Lippf qCθn|x ´ y|

ď
ÿ

a
GH|x ´ y|

ż

var0,1q |f ptq|dt `ÿ

a
GLebpvar0, 1qq ¨ H|x ´ y|Lippf qCθn

`
ÿ

a
GLebpvar0, 1qq ¨ Lippf qCθn|x ´ y|,

where in the last inequality we have used
Lebpvar0, 1qq “ |vap0q ´ vap1q| ă Cθn|0´ 1| “ Cθn.

But νar0, 1q are non-overlapping subintervals of r0, 1q, and so ř

a Lebpνar0, 1qq ď 1. We continue.
|ppT nf qpxq ´ ppT nf qpyq| ďGH|x ´ y|

ż

Ť

a var0,1q |f ptq|dt ` GH|x ´ y|Lippf qCθn ` GLippf qCθn|x ´ y|

ď|x ´ y| pGH}f}L1 ` pH ` 1qGLippf qCθnq .
It follows that LipppT nf q ď GH}f}L1 ` pH ` 1qGCθnLippf q.Second, we estimate }pT nf}L8 . Since pT nf is Lipschitz on interval r0, 1s, it follows that, for any x P r0, 1s,
|pT nf pxq| ď 1Lebr0, 1s

ż 1
0 |pT nf ptq|dt`LipppT nf qLebr0, 1s “ ż 1

0 |pT nf ptq|dt`LipppT nf q “ }pT nf}L1`LipppT nf q,
and hence

}pT nf}L8 ď }pT nf}L1 ` LipppT nf q ď }f}L1 ` LipppT nf q ď pGH ` 1q}f}L1 ` pH ` 1qGCθnLippf q.
Putting the two estimates for LipppT nf q and }pT nf}L8 together, we obtain

}pT nf} ” }pT nf}L8 ` LipppT nf q ď p2GH ` 1q}f}1 ` 2pH ` 1qGCθnLippf q.
By slightly increasing θ to r P pθ, 1q, we absorb the multiplicative constant

2pH ` 1qGCθk ď rk

for any sufficiently large k .We have verified the Doeblin-Fortet Inequality, and hence all conditions for Hennion’s Theorem 4.1 aremet. The proof of Theorem 4.2 is complete.
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5 2021.2.3 – 3.3 Meetings 5 – 8: Sarig A3, Hennion’s Theorem
In this meeting we will start the proof of Hennion’s Theorem.
Theorem 5.1 (Hennion). Suppose pL, } ¨ }q is a Banach space and L : L Ñ L is a bounded linear operator
with spectral radius ρpLq. Assume there exists a semi-norm } ¨ }1 on L such that

1. Continuity: L Ñ R, v ÞÑ }v}1 is a continuous function;

2. Precompactness: for any sequence tfnu Ď L, if sup }fn} ď `8, then there is a subsequence nk and
g P L such that

}Lfnk ´ g}1 kÑ`8
ÝÝÝÝÑ 0;

3. Boundedness:
DM ą 0,@f P L : }Lf}1 ď M}f}1;

4. Doeblin-Fortet Inequality: there are k ě 1 , r P p0, ρpLqq, R ą 0 such that

}Lk f} ď rk}f} ` R}f}1, @f P L.

Then, L : L Ñ L is quasi-compact.

Proof of Hennion’s Theorem.

5.1 Reduction to k “ 1 Case.It suffices to prove the case k “ 1. Indeed, assume k “ 1 case holds. Take L for which the Doeblin-FortetInequality holds for some k ě 2. We show this implies L is quasi-compact.Note for bounded linear operator L̃ :“ Lk and semi-norm } ¨ }1, we easily verify the four conditions for Hennion’sTheorem and so the k “ 1 case yields that L̃ is quasi-compact.Since L̃ “ Lk is quasi-compact, it follows that (i) specpLkq contains only finitely many points z P C with
|z| “ ρpLkq, (ii) every z P specpLkq with |z| “ ρpLkq is an eigenvalue of Lk with finite multiplicity, and (iii)points in specpLkq do not accumulate to the circle t|z| “ ρpLkqu.By Spectral Mapping Theorem7, we have

specpLkq “ pspecpLqqk .
Now, (i) implies that specpLq also contains finitely many points z P C with |z| “ ρpLq. (ii) implies that every
z P specpLq with |z| “ ρpLq is an eigenvalue of L with finite multiplicity; indeed, take any such z . Then,
zk P pspecpLqqk “ specpLkq with |zk | “ |z|k “ pρpLqqk “ ρpLkq. According to (ii), zk is an eigenvalue of Lkwith finite multiplicity; in other words, there is some v P Lzt0u such that Lkv “ zkv .Fix ρ P pr, ρpLqq and define closed annulus in the complex plane

Apρ, ρpLqq :“ tz P C : ρ ď |z| ď ρpLqu.

Lemma 5.2. Under the hypotheses of Hennion’s Theorem, for any z P Apρ, ρpLqq, we have

(i) K pzq :“ Ť

`ě1 kerpzI ´ Lq` is a finite-dimensional linear subspace, and Ipzq :“ Ş

`ě1 ImpzI ´ Lq` is a
closed linear subspace.

(ii) K pzq, Ipzq are both L-invariant and B “ K pzq ‘ Ipzq.

(iii) pzI ´ Lq : Ipzq Ñ Ipzq is a bijection with bounded inverse.
7Spectral Mapping Theorem [Con85] Theorem VII.4.10. If a P A and f P Holpaq, thenspecpfpaqq “ fpspecpaqq.Here, A is the Banach algebra BpLq and f : z ÞÑ zk .
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(iv) tλ P Apρ, ρpLqq : K pλq ‰ t0uu is finite and non-empty.Note (i) and (ii) imply, according to Proposition 3.6, that for any z P Apρ, ρpLqq, we have
specpLq “ specpL|K pzqq Y specpL|Ipzqq.But (iii) implies z R specpL|Ipzqq. If z P specpLq X Apρ, ρpLqq, then z must belong to specpL|K pzqq and hence

K pzq ‰ t0u. This implies
specpLq X Apρ, ρpLqq Ď tλ P Apρ, ρpLqq : K pλq ‰ t0uu.

By (iv), we conclude the intersection specpLq X Apρ, ρpLqq is finite, and it must be nonempty too by definitionof spectral radius ρpLq. Write specpLq X Apρ, ρpLqq “ tλ1, ¨ ¨ ¨ , λtu.If z is not an eigenvalue, then pzI ´ Lq is invertible, and so are its positive powers pzI ´ Lq` , ` ě 1. Therefore,
K pzq “ t0u, and so B “ Ipzq. But (iii) then implies pzI ´ Lq has a bounded inverse on Ipzq “ B, and hence
z R specpLqXApρ, ρpLqq. We conclude each element λi in the finite nonempty intersection specpLqXApρ, ρpLqqis an eigenvalue of L; moreover, each λi has finite geometric multiplicity by (i).By forming

F :“ t
à

i“1 K pλiq, H :“ t
č

i“1 Ipλiq,we will show (v) F is a direct sum, dimpF q ă `8, LpF q Ď F , and the eigenvalues of L|F are exactly λ1, ¨ ¨ ¨ , λt ;(vi) H is closed, LpHq Ď H , and B “ F ‘ H; (vii) ρpL|Hq ď ρ. It will then follow by definition that L isquasi-compact.
5.2 Conditional Closure & Riesz LemmasTo prove Lemma 5.2, we first prove the following result, which will be our main technical tool to utilize theDoeblin-Fortet Inequality.
Lemma 5.3 (Conditional Closure Lemma). Under the hypotheses of Hennion’s Theorem, fix z P C with |z| ą r,
and let tgnun Ď B be a sequence such that each equation

gn “ pzI ´ Lqfn (3)
has a solution fn P B. If }gn ´ g} Ñ 0 as n Ñ `8 and supn }fn} ă `8, then the sequence tfnun has a
subsequence in B converging to a solution f P B to the limiting equation

g “ pzI ´ Lqf .

Proof of Lemma 5.3. From equation (3), we have
gn ´ gm “ pzI ´ Lqfn ´ pzI ´ Lqfm “ zpfn ´ fmq ´ Lpfn ´ fmq, (4)

and hence
|z| ¨ }fn ´ fm} “ }gn ´ gm ` Lpfn ´ fmq} ď }gn ´ gm} ` r}fn ´ fm} ` R}fn ´ fm}1,by Doeblin-Fortet Inequality (k “ 1). Rearranging terms yields

}fn ´ fm} ď
}gn ´ gm} ` }fn ´ fm}1

|z| ´ r . (5)
First note

}gn ´ gm} ď }gn ´ g} ` }g´ gm}
m,nÑ`8
ÝÝÝÝÝÑ 0.To deal with }fn ´ fm}1, we start again from (4) and deduce

|z| ¨ }fn ´ fm}1 ď }gn ´ gm}1 ` }Lfn ´ Lfm}1
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by Triangle Inequality for the semi-norm } ¨ }1. Since supn }fn} ă `8, there is a subsequence tLfnk uk suchthat }Lfnk ´ h}1 kÑ`8
ÝÝÝÝÑ 0 for some h P B by Precompactness. Thus,

}fnk ´ fml}
1 ď

}gnk ´ gml}
1 ` }Lfnk ´ h}1 ` }h´ Lfml}

1

|z|
k,lÑ`8
ÝÝÝÝÝÑ 0.

Plugging this into estimate (5), we obtain Cauchyness
}fnk ´ fml}

k,lÑ`8
ÝÝÝÝÝÑ 0,

and so, by completeness of B, there is some f P B with
}fnk ´ f} kÑ`8

ÝÝÝÝÑ 0.
Since pzI ´ Lq is continuous, it follows that

g “ lim
kÑ`8

gnk “ lim
kÑ`8

pzI ´ Lqfnk “ pzI ´ Lq lim
kÑ`8

fnk “ pzI ´ Lqf .

This completes the proof of Conditional Closure Lemma.Before proving Lemma 5.2, we prove another separation result for general normed vector spaces.
Lemma 5.4 (Riesz Lemma). Let pV , } ¨ }q be a normed vector space and U Ď V a linear subspace with U ‰ V .
Then, for any r P p0, 1q, there is v P V with }v} “ 1 and distpv, Uq ě t.

Proof of Riesz Lemma. Fix any v0 P V zU . By definition of distpv0, Uq “ infuPU }v0 ´ u}, there is some u0 P Uwith distpv0, Uq ď }v0 ´ u0} ď 1
t distpv0, Uq.Note that for any u P U , we have

›

›

›

›

v0 ´ u0
}v0 ´ u0} ´

u
}v0 ´ u0}

›

›

›

›

“
}v0 ´ pu0 ` uq}
}v0 ´ u0} ě

distpv0, Uq1
t distpv0, Uq “ t.

Hence, v :“ v0´u0
}v0´u0} is the desired vector. This completes the proof fo Riesz Lemma.

Remark 5.5. As Tiago remarked on 2021.2.3, Riesz Lemma is commonly used to produce a sequence of vectorson the unit sphere that has no convergent subsequence, leading to non-compactness of the unit ball in aninfinite-dimensional Banach space, for instance. We will see it in action many times in the proof of Hennion’sTheorem.We are now ready to prove Lemma 5.2.
5.3 Step I
Proof of Lemma 5.2. Step I. If |z| ą r , then1. kerpzI ´ Lq` is finite-dimensional for all ` ě 1.2. ImpzI ´ Lq` is closed for all ` ě 0.3. There exists ` ě 1 such that K pzq “ kerpzI ´ Lq` and Ipzq “ ImpzI ´ Lq` .
Proof of Step I. Fix z P C with |z| ą r . Set K` :“ kerpzI ´ Lq` . We induct on ` ě 1 to show dimpK`q ă `8for all ` ě 1.
Base Case ` “ 1. For a contradiction, suppose dimpK1q “ `8. Take any f1 P K1 with }f1} “ 1. Since
S1 :“ spanpf1q Ď K1 is one-dimensional, it is closed and is not the entire space K1, Riesz Lemma applied with
t “ 12 yields f2 P K1 with }f2} “ 1 and distpf2, S1q ě 12 . Continuing this way, we obtain a sequence tfnun Ď K1such that

}fn} “ 1 and }fn ´ fm} ě
12 , @n ‰ m.
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Then, supn }fn} “ 1 ă `8 and pzI ´ Lqfn “ 0 because fn P K1 “ kerpzI ´ Lq. Conditional Closure Lemmathen yields a convergent subsequence of tfnun, contradicting the fact that }fn´ fm} ě 12 for all n ‰ m. We thusconclude the base case that dimpK1q ă `8.
Assume ` , show ` ` 1. Again, for a contradiction, suppose dimpK``1q “ `8. Then, by Riesz Lemma, we canconstruct a sequence tfnun Ď K``1 such that

}fn} “ 1 and }fn ´ fm} ě
12 , @n ‰ m.

But fn P K``1 “ kerpzI ´ Lq``1 implies that
gn :“ pzI ´ Lqfn P kerpzI ´ Lq` “ K` ,and
}gn} ď |z| ¨ }fn} ` }L} ¨ }fn} “ |z| ` }L}.By Induction Hypothesis, dimpK`q ă `8, and hence the unit ball in K` is compact; in particular, the sequence

tgnun has a convergent subsequence tgnk uk . Conditional Closure Lemma then yields a convergent subsequence
tfnkl ul, contradicting the fact that }fn ´ fm} ě 12 for all n ‰ m. We thus conclude the induction step thatdimpK``1q ă `8. This completes the induction and shows dimpK`q ă `8 for all ` ě 1.To see I` :“ ImpzI ´ Lq` is closed for all ` ě 1. We induct on ` ě 0, where pzI ´ Lq0 “ I .
Base Case ` “ 0. Clearly I0 “ B is closed.
Assume ` , show ` ` 1. Take a sequence tgnun Ď I``1, and assume gn B

ÝÝÝÝÑ
nÑ`8

g for some g P B. We need toshow g P I``1.Since gn P I``1 “ pzI ´ LqI` , we may write
gn “ pzI ´ Lqf 1n, for some f 1n P I` .Since K1 is finite dimensional and I` is closed by Induction Hypothesis, it follows that the intersection K1 X I`is also closed and finite-dimensional8, and hence there is some h P K1 X I` such that

}f 1n ´ h} “ distpf 1n, K1 X I`q “ min
h1PK1XI` }f

1
n ´ h1}.

Take fn :“ f 1n ´ h so that
gn “ pzI ´ Lqfn and }fn} “ distpfn, K1 X I`q.

CLAIM 1: supn }fn} ă `8. Otherwise, there exists a subsequence tfnk uk with }fnk } kÑ`8
ÝÝÝÝÑ `8. Then wehave gnk

}fnk }
kÑ`8
ÝÝÝÝÑ 0,

because gnk kÑ`8
ÝÝÝÝÑ g. Conditional Closure Lemma then yields a subsequence tfnkl ul with

fnkl
}fnkl }

B
ÝÝÝÝÑ
lÑ`8

h, for some h P B,
and h solves the limiting equation 0 “ pzI ´ Lqh.This shows h P K1. Since fnkl P I` and I` is closed by Induction Hypothesis, it follows that h P I` and hence
h P K1 X I` . In particular, distph, K1 X I`q “ 0, contradicting distpfnk , K1 X I`q “ }fnk } Ñ `8. This provesCLAIM 1.

8As Matheus pointed out, finite-dimensionality is important: mere closedness of a linear subspace S in a Ba-nach space is not sufficient to guarantee that for any vector v outside S , there is a vector s P S with
}v ´ s} “ distpv, Sq. For a concrete example, see https://math.stackexchange.com/questions/296354/
given-a-point-x-and-a-closed-subspace-y-of-a-normed-space-must-the-distance.
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Now that supn }fn} ă `8, Conditional Closure Lemma yields a subsequence tfnk uk converging to some f in
B, where f solves the limiting equation

g “ pzI ´ Lqf .Since fnk P I` and I` is closed by Induction Hypothesis, it follows that the limit f P I` as well, and thus
g P pzI ´ LqI` ” I``1. We conclude the induction step that I``1 is closed. This completes the induction andshows I` is closed for all ` ě 0.To show K pzq “ K` for some ` ě 1, we will prove the ascending sequence K1 Ď K2 Ď ¨ ¨ ¨ eventually stabilizes.For a contradiction, suppose the opposite. Then, there are infinitely many n for which Kn´1 Ĺ Kn; collect theseindices to form a strictly ascending subsequence Knk´1 Ĺ Knk of linear subspaces in B. Riesz Lemma appliedagain with t “ 12 yields a sequence fnk P Knk with

}fnk } “ 1 and distpfnk , Knk´1q ě 12 .In particular, the sequence tfnk uk is 12-separated.
CLAIM 2: the sequence tLmfnk uk is |z|m2 -separated for all m ě 1. Write

z´mLmfnk`l ´ z´mLmfnk “ fnk`l ´
“

pI ´ z´mLmqfnk`l ` z´mLmfnk
‰

.

We will show the term in the square bracket belongs to Knk`l´1 , which will then imply
}Lmfnk`l ´ Lmfnk } ě |z|m ¨ distpfnk`l , Knk`l´1q ě |z|m2 , @k, l ě 1;

in other words, we will then have proven CLAIM 2.First observe LpK`q Ă K` ; indeed, if f P K` , then
pzI ´ Lq`Lf “ LpzI ´ Lq` f “ 0.

This implies Lmfnk P Knk because fnk P Knk .Second observe pzI ´ LqK` Ď K`´1; indeed, if pzI ´ Lq` f “ 0, then
pzI ´ Lq`´1pzI ´ Lqf “ 0.

Thus, together with the first observation, we obtain
pI ´ z´mLmqfnk`l “

m´1
ÿ

j“0 z
´jLjpI ´ z´1Lqfnk`l P

m´1
ÿ

j“0 L
jKnk`l´1 Ď Knk`l´1 .

It follows that
“

pI ´ z´mLmqfnk`l ` z´mLmfnk
‰

P Knk`l´1 ,as desired. This proves CLAIM 2.To derive a contradiction in order to conclude K pzq “ K` , recall the Doeblin-Fortet Inequality, which we haveassumed to hold for k “ 1. Iterating the inequality yields
}Lmf} ď rm}f} ` R

m
ÿ

j“1 r
j}Lm´k f}1.

Taking f “ Lfnk ´ Lfnl , we obtain
}Lm`1fnk ´ Lm`1fnl} ďrm}Lfnk ´ Lfnl} ` R

m
ÿ

j“1 r
j}Lm´jLfnk ´ Lm´jLfnl}1

ďrm}L}2` R
m
ÿ

j“1 r
jMm´j}Lfnk ´ Lfnl}1,
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where we have used the fact that }fnk } “ 1 and the Boundedness assumption.Since supk }fnk } “ 1 ă `8, Precompactness yields a subsequence tfnki ui such that
}Lfnki ´ h}1 iÑ`8

ÝÝÝÝÑ 0, for some h P B.
Hence, for any ε ą 0, there are l ‰ k so large that

}Lm`1fnk ´ Lm`1fnl} ď 2rm}L} ` ε.

Choose m so large that 2rm}L} ď |z|m4 and choose ε ă |z|m4 . We thus obtain ki ‰ kj such that
}Lm`1fnki ´ Lm`1fnkj } ă |z|m2 ,

contradicting the |z|m2 -separation of sequence tLmfnk uk for all m ě 1 from CLAIM 2. We conclude that thesequence K1 Ď K2 Ď ¨ ¨ ¨ eventually stabilizes and hence K pzq “ K` for some ` ě 1, as required.A similar argument shows that the descending sequence I1 Ě I2 Ě ¨ ¨ ¨ also eventually stabilizes. Step I iscomplete.
5.4 Step II
Step II. LK pzq Ď K pzq, LIpzq Ď Ipzq and B “ K pzq ‘ Ipzq.
Proof of Step II. If f P K pzq ” Ť

`ě0 kerpzI ´ Lq` , then pzI ´ Lq` f “ 0 for some ` ě 0. Since
pzI ´ Lq`Lf “ LpzI ´ Lq` f “ L0 “ 0,

it follows that Lf P K pzq. This shows LK pzq Ď K pzq.If f P Ipzq ” Ş

`ě0 ImpzI ´ Lq` , then for each ` ě 0, there is some g` P B such that
pzI ´ Lq`g` “ f .

Now
Lf “ LpzI ´ Lq`g` “ pzI ´ Lq`Lg` P ImpzI ´ Lq` , @` ě 0.This shows Lf P Ipzq and hence LIpzq Ď Ipzq.Since both sequences K` and I` eventually stabilize K pzq “ Km and Ipzq “ Im for some m ě 0, it suffices toshow that B “ Km ‘ Im.First we show B “ Km ` Im. If f P B, then

pzI ´ Lqmf P Im “ I2m.So there is some g P B with pzI ´ Lqmf “ pzI ´ Lq2mg, and hence
pzI ´ Lqmrf ´ pzI ´ Lqmgs “ 0.

Now
f “ rf ´ pzI ´ Lqmgs ` pzI ´ Lqmg P Km ` Im,and hence B “ Km ` Im, as desired.To see the sum is direct, we show Km X Im “ t0u. Take f P Km X Im. Since f P Im, we have f “ pzI ´ Lqmg forsome g P B. But also f P Km, and so

pzI ´ Lq2mg “ pzI ´ gqmf “ 0.
Therefore, g P K2m “ Km, and hence f “ pzI ´ Lqmg “ 0. This shows Km X Im “ t0u and completes the proofof Step II.
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5.5 Step III
Step III. We show pzI ´ Lq : Ipzq Ñ Ipzq is a bijection with bounded inverse.
Proof fof Step III. Let m ě 0 be so large that K pzq “ Km and Ipzq “ Im. Note

kerpzI ´ Lq X Ipzq “ K1 X Im Ď Km X Im “ t0u
because the sum Km ‘ Im “ B is direct from Step II. So pzI ´ Lq is injective on Ipzq.Also,

pzI ´ LqIpzq “ pzI ´ LqIm “ Im`1 “ Im “ Ipzq,and so pzI ´ Lq is surjective on Ipzq. We have shown that pzI ´ Lq is a bijection on Ipzq.Since Ipzq is a closed linear subspace from Step I, it follows that Ipzq is a Banach space (under the same normas B), and hence the linear bijection pzI ´ Lq is an open mapping on Ipzq. We conclude it has a boundedinverse on Ipzq. This completes the proof of Step III.
5.6 Step IV
Step IV. K pzq “ t0u for all but finitely many z P Apρ, ρpLqq, and K pzq ‰ t0u for at least one z P C with
|z| “ ρpLq.
Proof of Step IV. First, for a contradiction, suppose that K pziq ‰ t0u for infinitely many tziuiě1 Ď Apρ, ρpLqq.By compactness of the closed annulus Apρ, ρpLqq, we obtain a subsequence zn nÑ`8

ÝÝÝÝÑ z P Apρ, ρpLqq.On the one hand, since K pznq ‰ t0u, we have kerpznI ´ Lq ‰ t0u. Indeed, if kerpzI ´ Lq “ t0u, then
pzI ´ Lqf “ 0 ñ f “ 0,

and so
pzI ´ Lq` f “ pzI ´ LqpzI ´ Lq`´1f “ 0 ñ pzI ´ Lqn´1f “ 0 ñ ¨ ¨ ¨ ñ f “ 0,

that is, kerpzI ´ Lq` “ t0u, and hence, K pzq “ t0u. On the other hand, if w ‰ z , then
wf ‰ zf , @f P Bzt0u,

and hence pwI ´ Lqf ‰ pzI ´ Lqf , therefore, kerpzI ´ Lq X kerpwI ´ Lq “ t0u.The above two observations allows us to form the direct sums
Fn :“ kerpz1I ´ Lq ‘ ¨ ¨ ¨ ‘ kerpznI ´ Lq.

Note F1 Ĺ F2 Ĺ ¨ ¨ ¨ . By Riesz Lemma, we construct a sequence fn P kerpznI ´ Lq Ď Fn with
}fn} “ 1, distpfn, Fn´1q ě 12 .Since fn P kerpznI ´ Lq, we have pznI ´ Lqfn “ 0, that is, znfn “ Lfn. Now for any n, k,m ě 1, we have

}Lmfn`k ´ Lmfn} “ }zmn`k fn`k ´ zmn fn} ě distpzmn`k fn`k , Fnq ě 12 |zn`k |m ě 12ρm,because z P Apρ, ρpLqq.We derive a contradiction in a similar way as we did in Step I. By iterating the Doeblin-Fortet Inequality
pk “ 1q for m times, we obtain

}Lmf} ď rm}f} ` R
n
ÿ

j“1 r
j}Lm´j f}1, @f P B,@m ě 1.

43



Apply this to vector pLfn`k ´ Lfnq to get
}Lm`1fn`k ´ Lm`1fn} ďrm}Lfn`k ´ Lfn} ` R

m
ÿ

j“1 r
j}Lm´jLfn`k ´ Lm´jLfn}1

ďrm}L}2` R
m
ÿ

j“1 r
jMm´j}Lfn`k ´ Lfn}1, @n, k,m ě 1.

Since supn }fn} “ 1 ă `8, it follows from Precompactness that there is a subsequence nl and some h P Bwith
}Lfnl ´ h}1 lÑ`8

ÝÝÝÝÑ 0.Fix ε ą 0. We have
}Lm`1fnl`1 ´ Lm`1fnl} ď rm}L}2` ε, @m ě 1, for large l.

Since r ă ρ, by taking a large m, we will have
}Lm`1fnl`1 ´ Lm`1fnl} ă 12ρm,a contradiction. We conclude there are at most finitely many z P Apρ, ρpLqq for which K pzq “ t0u.To see there is at least one z P C with |z| “ ρpLq and K pzq ‰ t0u, suppose the contrary. Then, there is some

ρ1 ă ρpLq such that K pzq “ 0 for all z P C with |z| ě ρ1. So Ipzq “ B for all z P C with |z| ě ρ1; it followsfrom Step III that pzI ´ Lq has a bounded inverse on Ipzq “ B. This implies ρpLq ď ρ1 ă ρpLq, a contradiction.We conclude there is at least one such z and complete the proof of Step IV.We have proven all four statements of Lemma 5.2.As discussed after the statement of Lemma 5.2, we now have the complete list of eigenvalues of L in Apρ, ρpLqq
tλ1, ¨ ¨ ¨ , λtu “ specpLq X Apρ, ρpLqq.

5.7 Step V
Step V. We show that the sum forming F :“ Àt

i“1 K pλiq is direct dimpF q ă `8, LF Ď F , and that theeigenvalues of L|F are exactly λ1, ¨ ¨ ¨ , λt .
Proof of Step V. To see the sum is direct, take vi P K pλiqzt0u with řt

i“1 αivi “ 0 for some scalars αi P C. Weneed to show αi “ 0 for all i “ 1, ¨ ¨ ¨ , t .For a contradiction, suppose αj ‰ 0 for some j . By Step I, there is some m ě 1 such that K pλiq “ kerpλiI´Lqmfor all i “ 1, ¨ ¨ ¨ , t . Define formal polynomials
pipZ q :“ pλi ´ Z qm, qjpZ q :“ź

i‰j
pipZ q.

Note qjpLqvi “ 0 for all i ‰ j , and hence
0 “ qjpLq

˜

t
ÿ

i“1 αivi
¸

“ αjqjpLqvj .

But αj “ 0, and so qjpLqvj “ 0.Since polynomials pjpZ q and qjpZ q have no zeros in common, it follows that they are relatively prime andhence there are two other formal polynomials apZ q, bpZ q such that
apZ qpjpZ q ` bpZ qqjpZ q “ 1.

Evaluating this equation at Z “ L and applying it to vj , we obtain
vj “ papLqpjpLq ` bpLqqjpLqqvj “ apLqpjpLqvj ` bpLqqjpLqvj “ 0,
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a contradiction. We thus conclude the sum is direct.Since dimpK pλiqq ă `8 for each i “ 1, ¨ ¨ ¨ , t from Step I, it follows that the finite direct sum F ”
Àt

i“1 K pλiqalso has finite dimension.Again, from Step I, we have LK pλiq Ď K pλiq for each i “ 1, ¨ ¨ ¨ t; it then follows that LF Ď F .From the eigenequation λf “ L|F f , we derive
t
ÿ

i“1 αiλfi “ λf “ L|F f “ L|F
t
ÿ

i“1 αifi “
t
ÿ

i“1 αiλifi,and hence
αiλ “ αiλi, @i “ 1, ¨ ¨ ¨ , t.Since f ‰ 0, at least one of αi is nonzero. Also, λi P Apρ, ρpLqq Ď Czt0u. It then follows that αi ‰ 0 for exactlyone i, and for this i, we have λ “ λi. This shows the eigenvalues of L|F all belong to tλ1, ¨ ¨ ¨ , λtu.Conversely, for any i “ 1, ¨ ¨ ¨ , t , we have K pλiq ‰ t0u, and hence kerpλiI ´ Lq ‰ t0u. It follows that there issome nonzero f P kerpλiI ´ LqK pλiq Ď F for which

L|F f “ Lf “ λif .

This shows f P Fzt0u is an eigenvector for eigenvalue λi of L|F , and hence the eigenvalues of L|F are precisely
tλ1, ¨ ¨ ¨ , λtu. The proof of Step V is complete.
5.8 Step VI
Step VI. We show H ”

Şt
i“1 Ipλiq is closed and L-invariant, and B “ F ‘ H .

Proof of Step VI. From Step I, we have already each Ipλiq is closed and L-invariant, and hence the intersection
H is also closed and L-invariant.For each i “ 1, ¨ ¨ ¨ , t , we have from Step II that B “ K pλiq ‘ Ipλiq, and thus a projection operator

πi : B Ñ K pλiq, πipf q P K pλiq, pI ´ πiqf P Ipλiq.

Firstly, note
πiL “ Lπi.Indeed, since LK pλiq Ď K pλiq and LIpλiq Ď Ipλiq from Step II, it follows that

πiLf “ πiLpπif ` pI ´ πiqf q “ πipLπif q ` πipLpI ´ πiqf q “ Lπif , @f P B.

Secondly, note πiπj “ 0 for all i ‰ j . Indeed, take u P B and let
v :“ πjpuq P K pλjq “ kerpλj I ´ Lqm.

By binomial expansion, we have
0 “ pλj I ´ Lqmv “pλj I ´ λiI ` λiI ´ Lqmv “

m
ÿ

k“0
ˆ

m
k

˙

pλj ´ λiqm´kpλiI ´ Lqkv

“pλj ´ λiqmv `
m
ÿ

k“1
ˆ

m
k

˙

pλj ´ λiqm´kpλiI ´ Lqkv

By reorganizing terms, we obtain
v “ ´pλj ´ λiq´m

m
ÿ

k“1
ˆ

m
k

˙

pλj ´ λiqm´kpλiI ´ Lqkv.
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Iterating this equation m times, we have
v “

«

´pλj ´ λiq´m
m
ÿ

k“1
ˆ

m
k

˙

pλj ´ λiqm´kpλiI ´ Lqk
ffm

v P ImpλiI ´ Lqm.

It follows that v P Ipλiq “ kerπi and hence pπiπjqu “ πipvq “ 0 for any u P B, as desired.Now we are ready to prove B “ F ‘ H . Decompose any f P B into
f “

t
ÿ

i“1πipf q `
˜

f ´
t
ÿ

i“1πipf q
¸

.

Clearly řt
i“1 πipf q P F . Also,

˜

f ´
t
ÿ

i“1πipf q
¸

P

t
č

i“1 kerπi “ t
č

i“1 Ipλiq “ H.

This shows B “ F ` H .To see the sum is direct, take f P F XH . Then, πipf q “ 0 for each i because f P H “ Şt
i“1 Ipλiq “ Şt

i“1 kerπi.But f P F implies f “ řt
i“1 πipf q “ 0. This shows F X H “ t0u and hence the sum is direct, as desired. Theproof of Step VI is complete.

5.9 Step VII
Step VII. We show ρpL|Hq ď ρ.
Proof of Step VII. It suffices to show that pzI ´ Lq : H Ñ H has a bounded inverse for any z P C with |z| ě ρ.Fix such a z and an h P H .If |z| ą ρpLq, then clearly pzI ´ Lq has a bounded inverse on B, and hence on H . Now suppose z P Apρ, ρpLqq.If z R tλ1, ¨ ¨ ¨ , λtu, then K pzq “ t0u. So Ipzq “ B and hence pzI ´ Lq has a bounded inverse on Ipzq “ B,according to Step III. Now suppose z “ λi for some i.Recall from Step III that pλiI ´ Lq is an isomorphism on Ipλiq. So there is a unique f P Ipλiq for which
h “ pλiI ´ Lqf . We show f P H .According to Steps V and VI, it suffices to check πjpf q “ 0 for all j “ 1, ¨ ¨ ¨ , t .If j “ i, then f P Ipλiq “ kerπi and so πipf q “ 0.If j ‰ i, then, by the first observation that πjL “ Lπj , we have

0 “ πjphq “ πjpλiI ´ Lqf “ pλiI ´ Lqπj f .This shows πj f P kerpλiI ´ Lq Ď K pλiq and hence πj f P K pλiq X K pλjq “ t0u. We conclude
f P

t
č

j“1 kerπj ” H,

and hence for each h P H , there is a unique f P H for which h “ pzI´Lqf . In other words, pzI´Hq is invertibleon H . But H is a Banach space for being closed in Banach space B, and hence Open Mapping Theorem yieldsthat pzI ´ Hq has a bounded inverse on H . This proves Step VII.In summary, we have proven that
B “ F ‘ His an L-invariant decomposition with F finite-dimensional, H closed; all eigenvalues of L|F have modulus ě ρbecause tλ1, ¨ ¨ ¨ , λtu Ď Apρ, ρpLqq, and ρpL|Hq ď ρ. We conclude that L is quasi-compact and close the proofof Hennion’s Theorem.
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6 Gabriel: Exercise 1.5.4
Exercise 1.5.4. If pT has an acip, say µh, and 1 is a simple eigenvalue, and all other eigenvalues have
modulus strictly less than 1, then the acip µh is weak mixing, i.e.,

lim
nÑ8

1
n

n´1
ÿ

i“0 |µpT
´iE X F q ´ µpEqµpF q| “ 0, @E, F P B .

6.0.1 Characterizations of Weak MixingLet pX, B , µ, T q be a Lebesgue measure-preserving space. The space L2pµq is Hilbert with the following innerproduct:
xf , gy “

ż

fgdµ.
Definition 6.1. A complex number λ is an eigenvalue of T if it is an eigenvalue of the Koopman operator
UT : L2pµq Ñ L2pµq, i.e., if there exists f P L2pµq such that f ‰ 0 and f ˝ T “ λf . Such an f is called an
eigenfunction corresponding to λ.
Lemma 6.2. If λ is an eigenvalue of T , then |λ| “ 1.

Proof. Suppose UT pf q “ λf , where f ‰ 0. Then:
}f}2 “ }UT pf q}2 “ }λf}2 “ |λ|2}f}2.

Therefore |λ| “ 1.
Definition 6.3. The probability invariant measure µ is weak mixing if, for every E, F P B :

lim
nÑ8

1
n

n´1
ÿ

i“0 |µpT
´iE X F q ´ µpEqµpF q| “ 0. (6)

Lemma 6.4. (Koopman-von Newmann Lemma) If panqnPN is a bounded sequence of real numbers then the
following are equivalent:

(a)

lim
nÑ8

1
n

n´1
ÿ

i“0 |ai| “ 0.
(b) There exists a subset N of N of density zero such that limnÑ8 an “ 0 provided n R N . Density zero

means that:
ˆ

cardinalitypN X t0, . . . , n´ 1uq
n

˙

ÝÑ 0.
(c)

lim
nÑ8

1
n

n´1
ÿ

i“0 |ai|
2 “ 0.

Proof. If M Ă N, denote by αMpnq the cardinality of M X t0, . . . , n´ 1u.(a)ñ(b) For each k ą 0, define Jk :“ tn P N; |an| ě 1{ku. Then J1 Ă J2 Ă ¨ ¨ ¨ . Each Jk has density zero since:
1
n

n´1
ÿ

i“0 |ai| ě
1
n

1
k αJk pnq.
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Therefore there exist integers 0 “ m0 ă m1 ă m2 ă ¨ ¨ ¨ such that, for n ě mk :1
nαJk`1pnq ă 1

k ` 1 .Define:
N :“ 8

ď

k“0 rJk`1 X rmk , mk`1qs .
We now show that N has density zero. Since J1 Ă J2 Ă ¨ ¨ ¨ , if mk ď n ă mk`1, then:

N X r0, nq “ rN X r0, mkqs Y rN X rmk , nqs Ă rJk X r0, mkqs Y rJk`1 X r0, nqs .
Therefore: 1

nαN pnq ď
1
n ď

1
n
`

αJk pmkq ` αJk`1pnq
˘

ď
1
n
`

αJk pnq ` αJk`1pnq
˘

ď
1
k `

1
k ` 1 .Hence p1{nqαN pnq Ñ 0 as n Ñ 8, and so N has density zero. Now, if n ą mk and n R N , then

n R Jk`1 and, therefore, |an| ă 1{pk ` 1q. Hence:
lim

NSnÑ8
|an| “ 0.

(b)ñ(a) Suppose |an| ď K for all n P N, and fix ε ą 0. There exists Nε such that n ě Nε implies:
1
n

n´1
ÿ

i“0 |ai| “
1
n

»

–

ÿ

iPNXt0,...,n´1u |ai| `
ÿ

iRNXt0,...,n´1u |ai|
fi

fl ă
K
n αN pnq ` ε ă pK ` 1qε.

(a)ô(c) By the above it suffices to note that limNSnÑ8 |an| “ 0 iff limNSnÑ8 |an|2 “ 0.
Theorem 6.5. Let pX, B , µ, T q be a Lebesgue probability invariant space. The following are equivalent:

(a) µ is weak mixing;

(b) for all f P L2pµq:
lim
nÑ8

1
n

n´1
ÿ

i“0 |xU
i
T pf q, fy ´ xf ,1yx1, fy| “ 0;

(c) for all f , g P L2pµq:
lim
nÑ8

1
n

n´1
ÿ

i“0 |xU
i
T pf q, gy ´ xf ,1yx1, gy| “ 0;

(d) if f P L2pµq is such that UT pf q “ λf for some λ P C, then f is constant almost everywhere.

Proof.(a)ñ(b) By weak mixing, we have that, for A, B P B :
lim
nÑ8

1
n

n´1
ÿ

i“0 |xU
i
T pχAq, χBy ´ xχA,1yx1, χBy| “ 0.

Fixing B and picking h to be a simple function, the bi-linearity of inner product and triangle inequalityimply that:
lim
nÑ8

1
n

n´1
ÿ

i“0 |xU
i
T phq, χBy ´ xh,1yx1, χBy| “ 0.
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Now, fixing h, we conclude that:
lim
nÑ8

1
n

n´1
ÿ

i“0 |xU
i
T phq, hy ´ xh,1yx1, hy| “ 0.

So (b) is valid for simple functions. Suppose f P L2pµq and let ε ą 0. Choose a simple function h suchthat }f ´ h}2 ă ε, and choose Npεq so that n ě Npεq implies:
1
n

n´1
ÿ

i“0 |xU
i
T phq, hy ´ xh,1yx1, hy| ă ε.

Then, if n ě Npεq:
1
n

n´1
ÿ

i“0 |xU
i
T pf q, fy ´ xf ,1yx1, fy| ď

1
n

n´1
ÿ

i“0 |xU
i
T pf q, fy ´ xU i

T phq, fy| `
1
n

n´1
ÿ

i“0 |xU
i
T phq, fy ´ xU i

T phq, hy|

`
1
n

n´1
ÿ

i“0 |xU
i
T phq, hy ´ xh,1yx1, hy|

`
1
n

n´1
ÿ

i“0 |xh,1yx1, hy ´ xf ,1yx1, hy|
`

1
n

n´1
ÿ

i“0 |xf ,1yx1, hy ´ xf ,1yx1, fy|
ď

1
n

n´1
ÿ

i“0 |xU
i
T pf ´ hq, fy| ` 1

n

n´1
ÿ

i“0 |xU
i
T phq, f ´ hy| ` ε

`|x1, hy||xh´ f ,1y| ` |xf ,1y||x1, h´ fy|
ď }f ´ h}2}f}2 ` }f ´ h}2}h}2 ` ε ` }h}2}f ´ h}2 “ }f}2}h´ f}2
ď ε}f}2 ` εp}f}2 ` εq ` ε ` p}f}2 ` εqε ` ε}f}2.

Therefore, 1
n
řn´1
i“0 |xU i

T pf q, fy ´ xf ,1yx1, fy| “ 0.(b)ñ(c) Let f P L2pµq and let Hf denote the smallest (closed) subspace of L2pµq containing f and the constantfunctions and satisfying UTHf Ă Hf . Define:
Ff :“ #

g P L2pµq; 1
n

n´1
ÿ

i“0 |xU
i
T pf q, gy ´ xf ,1yx1, gy| “ 0+ .

By hypothesis, Ff is a closed subspace of L2pµq containing f and the constant functions. Since this set is
UT invariant, it contains Hf . Now, if g P HK

f , then xUn
T pf q, gy “ 0 for n ě 0 and x1, gy “ 0. Therefore,

HK
f Ă Ff , i.e., Ff “ L2pµq.(c)ñ(a) Just choose characteristic function.(b)ñ(d) Suppose UT pf q “ λf for some f P L2pµq. If λ “ 1, then f is constant a.e. by ergodicity of µ (weak mixingimplies ergodicity). If λ ‰ 1, then:

λ
ż

fdµ “ ż

f ˝ Tdµ “ ż

fdT˚µ “ ż

fdµ.
Hence xf ,1y “ 0. Then, by hypothesis:

lim
nÑ8

1
n

n´1
ÿ

i“0 |xλ
if , fy| “ lim

nÑ8

1
n

n´1
ÿ

i“0 |xU
i
T pf q, fy| “ 0.

Since |λ| “ 1 this gives xf , fy “ 0 and therefore f “ 0 a.e.
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(d)ñ(a) This step requires some additional results as follows.
Definition 6.6. If n ă 0, we define Un

T :“ pU˚T q|n|, where U˚T is the unique operator such that xU˚T pf q, gy “
xf , U˚T pgqy for every f , g P L2pµq. Note that, if T is invertible, then U´1

T “ pUT q´1.
Definition 6.7. If f P L2zt0u, we define the spectral measure of f as being the unique measure νf on S1 suchthat xUn

T pf q, fy “
ş

S1 zndνf for every n P Z. (existence and uniqueness of νf ?)
Proposition 6.8 ([?], Proposition 3.3). If T satisfies (d) on Theorem 6.5, then all the spectral measures of f P L2
such that

ş

fdµ “ 0 are non-atomic (i.e. unitary sets have zero measure).

Proof. Suppose f P L2pµq has measure zero and that νf has an atom λ P S1. We will construct an eigenfunctionwith eigenvalue λ. Consider the sequence:
1
n

n´1
ÿ

i“0 λ
´iU i

T pf q.

This sequence is bounded in norm, therefore has a weakly convergent subsequence (why?) (here we use thethat L2pµq is separable – a consequence of the fact that pX, B , µq is a Lebesgue space):
1
nk

nk´1
ÿ

i“0 λ
´iU i

T pf q
w
ÝÑ g.

The limit g satisfies xUT pgq, hy “ xλg, hy for all h P L2pµq (check!). Therefore g is an eigenfunction witheigenvalue λ. Now we show g is non-constant. We have:
xg, fy “ lim

kÑ8

1
nk

nk´1
ÿ

i“0 λ
´ixU i

T pf q, fy “ lim
kÑ8

1
nk

nk´1
ÿ

i“0
ż

S1 λ
´izidνf pzq

“ νf ptλuq ` lim
kÑ8

1
nk

nk´1
ÿ

i“0
ż

S1ztλu λ
´izidνf pzq

“ νf ptλuq ` lim
kÑ8

ż

S1ztλu
1
nk
¨
1´ λnk znk1´ λ´1z dνf pzq.

The limit tends to zero, because the integrand tends to zero and is uniformly bounded by 1. Thus xg, fy “
νf ptλuq ‰ 0, whence g is non-constant. This contradicts the hypothesis on T .
Lemma 6.9. If T satisfies (d) on Theorem 6.5, then for every real-valued f P L2pµq:

lim
nÑ8

1
n

n´1
ÿ

i“0
ˇ

ˇ

ˇ
xU i

T pf q, fy ´ xf ,1y2ˇˇˇ “ 0.
Proof. It is enough to consider the case when ş

fdµ “ 0 (when ş

fdµ ‰ 0, applie the result for F :“ f ´
ş

fdµ).Let νf be the spectral measure of f . Then, for each n P N:
1
n

n´1
ÿ

i“0
ˇ

ˇ

ˇ
xU i

T pf q, fy
ˇ

ˇ

ˇ

2
“

1
n

n´1
ÿ

i“0
ˇ

ˇ

ˇ

ż

S1 z
ndνf pzqˇˇˇ2

“
1
n

n´1
ÿ

i“0
ˆ
ż

S1 z
ndνf pzq˙ˆ

ż

S1 zndνf pzq
˙

“
1
n

n´1
ÿ

i“0
ż

S1
ż

S1 z
nwndνf pzqdνf pwq

“

ż

S1
ż

S1
1
n

˜

n´1
ÿ

i“0 z
nwn

¸ dνf pzqdνf pwq.
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The integrand tends to zero and is bounded outside 4 :“ tpz, wq; z “ wu (why?). If we can show that
pνf ˆ νf qp4q “ 0, then it will follow that:

lim
nÑ8

1
n

n´1
ÿ

i“0
ˇ

ˇ

ˇ
xU i

T pf q, fy
ˇ

ˇ

ˇ

2
“ 0.

This is indeed the case: T satisfies (d) on Theorem6.5, so, by the previous proposition, νf is non-atomic. ByFubini-Tonelli, it follows that pνf ˆ νf qp4q “
ş

S1 νf ptwuqdνf pwq “ 0.Now, by Koopman-von Newmann Lemma, for every bounded non-negative sequence panqnPN, 1
n
řn´1
i“0 an Ñ 0iff 1

n
řn´1
i“0 a2

n Ñ 0, and this completes the proof.
Proposition 6.10. If T satisfies (d) on Theorem6.5, then for every real-valued f , g P L2pµq:

lim
nÑ8

1
n

n´1
ÿ

i“0
ˇ

ˇ

ˇ
xU i

T pf q, gy ´ xf ,1yxg, 1y
ˇ

ˇ

ˇ
“ 0. (7)

Proof. Again it is enough to consider the case when ş

fdµ “ 0. Define:
Spf q :“ span tUn

T pf q; n ě 0u Y t1u.Then L2pµq “ Spf q ‘ Spf qK.• Every g P Spf q satisfies (7). In fact, note that if g1, . . . , gm satisfy (7), then so does g :“ ř

αigi for any
αi P R. Therefore it is enough to check (7) for g :“ Un

T pf q and g ” constant. Constant functions satisfy(7) because, for such functions, ş g ¨ f ˝ T ndµ “ 0 for all n ě 0 since ş

fdµ “ 0. Set g :“ Un
T pf q for some

n ě 0. Then, for all m ě n:
ż

g ¨ f ˝ Tmdµ “ ż

pf ˝ T nqpf ˝ Tmqdµ “ ż

f ¨ f ˝ Tm´ndµ NSnÑ8
ÝÑ 0,

for some N Ă N of density zero, by Lemma6.9. The claim follows by Koopman-von Newmann Lemma.• Every g K Spf q‘tconstantsu satisfies (7), because xg, f ˝T ny is eventually zero and ş

gdµ “ xg, 1y “ 0.
Remark 6.11. Choosing characterisc functions in (7), we conclude the implication (d)ñ(a) on Theorem6.5.
6.0.2 The Exercise

Exercise 1.5.3. If pT has an acip, say µh, and 1 is a simple eigenvalue, i.e., dimtg P L1pµq : pTg “ gu “ 1,
then the acip µh is unique and ergodic.

Remark 6.12. Being µh the unique acip, we conclude that µh “ µ.
Lemma 6.13. [[?], Proposition 1.1] The following are equivalent:• µ is ergodic;• if f : X Ñ R is a measurable function such that f ˝ T “ f a.e., then f is constant a.e.

Lemma 6.14. If f P L1pµq and g P L8pµq, the following equality holds:

pT ppf ˝ T q ¨ gq “ f ¨ pT pgq.

Proof. Fix φ P L8pµq. Then:
ż

φ ¨pT ppf ˝ T q ¨ gq dµ “ ż

pφ˝T q¨pf ˝T q¨gdµ “ ż

rpφ ¨ f q ˝ T s¨gdµ 9
“

ż

pφ ¨f q¨pT pgqdµ “ ż

φ ¨
”

f ¨ pT pgq
ı dµ.

Therefore pT ppf ˝ T q ¨ gq “ f ¨ pT pgq.9Repeat the proof of Characterization of the Transfer Operator interchanging the roles of L1pµq and L8pµq; in fact it is valid for every
p, q P r1,8s such that p´1 ` q´1 “ 1.
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Exercise 1.5.4. If pT has an acip, say µh, and 1 is a simple eigenvalue, and all other eigenvalues have
modulus strictly less than 1, then the acip µh is weak mixing.

Proof. By Exercise 1.5.3, we know that µh “ µ and µ is ergodic.Let f P L2pµq and λ P C be such that f ˝ T “ λf . We need to show that f is constante a.e. By Lemma6.2,
|λ| “ 1. Now, by the previous lemma, we have:

pT pλf q “ pT ppf ˝ T q ¨ 1q “ f ¨ pT p1q “ f .

This implies that pT pf q “ 1
λ f . But | 1λ | “ |λ| “ 1 and, by hypothesis, we conclude that λ “ 1. Being µ ergodic,it follows from Lemma6.13 that f is constant a.e.

Next Exercises: Show that Exercises 1.5.3 and 1.5.4 are “iff”.
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7 Edmilson: space of Lipschitz functions
Check pLip, } ¨ }Lipq is a Banach space;
Proof. Disclaimer. We denote the space of Lipschitz functions as pL, } ¨ }q where

}f} :“ }f}8 ` Lippf q,
Lippf q “ sup

x‰y

!

|f pxq ´ f pyq|
|x ´ y|

)

.

To prove that pL, } ¨ }q is a Banach space, take a Cauchy sequence tfnun Ă L. Hence, for a fixed ε ą 0 thereexists N0 ą 0 such that for n,m ą N0 we have
}fn ´ fm} ă ε. (8)

By the definition of } ¨ } we conclude
ε ą Lippfn ´ fmq

ą
|fnpxq ´ fnpyq ´ pfmpxq ´ fmpyqq|

|x ´ y| .

Note that fnpxq is clearly a Cauchy sequence of complex numbers for any fixed x P r0, 1s. In particular, bycompleteness of C there is a limit f pxq for each x . Thus, we get a limiting function f ptq. Moreover, letting
mÑ8 in

|fnpxq ´ fnpyq ´ pfmpxq ´ fmpyqq|
|x ´ y| ă ε, @n,m ą N0, x ‰ y P r0, 1s

we see
|fnpxq ´ fnpyq ´ pf pxq ´ f pyqq|

|x ´ y| ă ε.

If we define gn :“ fn ´ f , rearranging the above expression, we obtain
|gnpxq ´ gnpyq| ă ε|x ´ y|,

which means, gn is a Lipschitz function, i.e., fn´ f P L. By assumption, fn P L, so we conclude f “ fn´gn P L,since the difference of two Lipschitz functions is Lipschitz.Since f P L, we proved that any Cauchy sequence with respect to } ¨ } converged to a point inside the space.Hence, the claim follows.
Prove }f}8 ď Lippf q for complex Lipschitz observables f : r0, 1s Ñ C with ş

fdLeb “ 0.
Definition 7.1. A subset S Ă Rn is said to be convex if p1´ λqx ` λy P S for all x, y P S and 0 ă λ ă 1.
Definition 7.2. The intersection of all the convex sets containing a given subset S Ă Rn is called the convex
hull of S and is denoted by conv S .Let x1, . . . , xm P Rn. A vector sum

λ1x1 ` ¨ ¨ ¨ ` λmxm

is called a convex combination of x1, . . . , xm if the coefficients λi are all non-negative and λ1 ` ¨ ¨ ¨ ` λm “ 1.
Theorem 7.3 ([Roc70]). For any S Ă Rn, conv S consists of all the convex combinations of the elements of S.
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(a) Image under f is denoted Rpf q Ă C.
Situation 1

Situation 2

(b) Left panel shows the convex hull of Rpf q in shaded blue.Note the origin is not in the Rpf q, even though we there arepoints of the type px, 0q and p0, yq. Right panel shows twodistinct situations: Situation 1 is the case in which the originis inside the convex hull of Rpf q, conv Rpf q, and situation 2is the opposite case where the origin is in the complement of
conv Rpf q.

Figure 7: The reason for the origin to be inside the closed convex hull Rpf q is captured by the geometricpicture depicted in Situation 1 and 2. Note both figures differ in where the argument of replacing sup |f pxq| bythe diameter of Rpf q is correct.
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Proof. Having Figure 7 in mind the proof goes as follow. Assume 0 is in the closed convex hull of f pr0, 1sq (0is inside the blue region). Then,
}f}8 “ ess sup

xPr0,1s |f pxq|
ď diampf pr0, 1sqq
ď Lippf qdiampr0, 1sq “ Lippf q.

We prove the following claim: 0 P conv f Ă C.We can construct a probability measure (an average of delta measures over equally spaced points in the interval
r0, 1s) such that in the limit this converges to the Leb measure on r0, 1s. This average is a convex combinationon the interval, and in the limit, on C. That is,

µn :“ 1
n` 1 n

ÿ

i“0 δi{n
˚
ÝÑ Leb.

Hence, in particular, since f is continuous, then
1

n` 1 n
ÿ

i“0 f pi{nq “
ż

fdµn Ñ ż

fdLeb “ 0.
So, we conclude 0 could be written as a limit of a sequence pynqn of the form yn “

řn
i“0 λif pi{nq, řn

i“0 λi “ 1and for each i: λi ě 0.
Discuss how norm dominance in the subspace is related to the ideas of compact embedding.
Finite-dimensional example. Pick the real line R and think as an object into the plane, R2, where both spaceare given by the Euclidean norm. So, we could think as a map:

i : pR, } ¨ }2q Ñ pR2, } ¨ }2q
x ÞÑ px, 0q.

In this case, }x}2 “ }px, 0q}2 for every x P R.This motivates us to introduce the notion of continuous embedding.
Definition 7.4. (Continuous embedding) Let B and B 1 be two normed vector spaces, with norms } ¨ }B and } ¨ }B 1respectively, such that B Ă B 1. If the inclusion map (identity function)

i :B Ñ B 1

x ÞÑ x

is continuous, i.e. if there exists a constant C ě 0 such that
}x}B 1 ď C}x}B

for every x P B , then B is said to be continuously embedded in B 1.From this definition, the norm dominance we observed so far are:• From the previous exercise, we conclude L is continuously embedded into L8.• And more importantly, since X “ r0, 1s has finite measure, we conclude L is continuously embedded into
L1 (}f}1 ď }f}8).Norm dominance per se is not enough to prove Hennion’s theorem. We need in addition that the embedding of

B into B 1 is a compact operator.
Definition 7.5. (Compact embedding) Let B and B 1 be two normed vector spaces, and suppose that B Ă B 1.We say that B is compactly embedded in B 1 (B ĂĂ B 1) if
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• B is continuously embedded in B 1; and• the embedding of B into B 1 is a compact operator, i.e., any bounded sequence in B admits a subsequencewhich is Cauchy in the norm of B 1.
Assumptions of Hennion's theorem: variants

Continuity Pre-compactness

and

Boundedness

Compact embedding

Cauchy sequence

Figure 8: Left hand side shows Sarig’s statement of Hennion’s theorem. Right hand side shows a variantformulation in terms of compact embedding.
Theorem 7.6 ([Bal18]). Let L : B Ñ B be a bounded operator on a Banach space pB , } ¨ }q, and let pB 1, } ¨ }1q be
a Banach space containing B such that the inclusion B Ă B 1 is compact. Assume that there exist two sequences
of real numbers rn and Rn such that for any n ě 1 and any φ P B

}Lnφ} ď rn}φ} ` Rn}φ}1.

Then the essential spectral radius of L on B is not larger than

lim inf
nÑ8

prnq1{n.
For a definition of essential spectral radius and an alternative definition of quasi-compactness see Hennionand Herve’s book [Hen01] (Sarig cite this book in the end of Appendix A3.
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8 2020.3.10 – 24 Meetings 9–11: Sarig L3, Analytic Perturbation Theory
This section studies the analytic perturbation of a bounded linear operator and culminates in Theorem 8.19,which says that a small analytic perturbation does not destroy the spectral gap. We will later use this resultto prove the Central Limit Theorem.Let pL, } ¨ }q be a Banach space over C, B “ BpLq denote the space of all bounded linear operators L : L Ñ Lwith norm

}L} :“ sup
xPLzt0u

}Lx}
}x} .Denote by L˚ the space of all bounded linear functionals φ : L Ñ C with norm

}φ} :“ sup
xPLzt0u

|φpxq|
}x} ,

and similarly denote by B˚ the space of all bounded linear functionals φ : B Ñ C.We will be interested in one-parameter (complex) family Lz , z P U Ď C of bounded linear operators Lz : L Ñ L.More precisely, let U Ď C be open and nonempty, and consider
L : U Ñ B, z ÞÑ Lz .

This dependence of Lz P B on z P U will be “analytic” (a notion to be specified below). Hence, we may thinkof the family Lz as an analytic perturbation of some fixed operator Lz0 .
8.1 Calculus in Banach Spaces
8.1.1 Riemann Integral and Riemann SumsRecall the area under a continuous curve f : ra, bs Ñ R is calculated by Riemann integral şba fdx , defined asthe limit of Riemann sums

n
ÿ

i“1 f pξrti,ti`1sqrti`1 ´ tis,

where a “ t1 ă t2 ă ¨ ¨ ¨ ă tn`1 “ b, ξrti,ti`1s P rti, ti`1s, and the limit is taken as the mesh sizemaxi“1,¨¨¨ ,n |ti`1 ´ ti| tends to 0.To see this limit exists, take two meshes M 1 “ tt11, ¨ ¨ ¨ , t1n1`1u of size δ 1 and M2 “ tt21 , ¨ ¨ ¨ , t2n2`1u of size δ2.Amalgamate the two together to obtain a finer mesh M “ tt1, ¨ ¨ ¨ , tn`1u of size δ :“ mintδ 1, δ2u. Denote by
RpMq the Riemann sum for mesh M .

57



Figure 9: Two meshes M 1 of size δ 1 and M2 of size δ2 amalgamate to a refinement of both meshes, namely,
M of size δ . The Riemann sums RpM 1q and RpM2q corresponding to the two meshes can be compared against
RpMq, establishing Cauchy-ness of the Riemann sums.
Fix ε ą 0. By uniform continuity of continuous f on compact interval ra, bs, there is some δpεq ą 0 for which
|x ´ y| ď δpεq implies |f pxq ´ f pyq| ď ε .When δ 1, δ2 ď δpεq, we have
|RpM 1q ´ RpM2q| ď |RpM 1q ´ RpMq| ` |RpMq ´ RpM2q|

“

ˇ

ˇ

ˇ

ˇ

ˇ

n1
ÿ

i“1 f pξ
1
rt1i ,t1i`1sqrt1i`1 ´ t1i s ´

n
ÿ

i“1 f pξrti,ti`1sqrti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pξrti,ti`1sqrti`1 ´ tis ´
n2
ÿ

i“1 f pξ
2
rt2i ,t2i`1sqrt2i`1 ´ t2i s

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pξ
1
rt1jpiq,t1jpiq`1sqrti`1 ´ tis ´

n
ÿ

i“1 f pξrti,ti`1sqrti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pξrti,ti`1sqrti`1 ´ tis ´
n
ÿ

i“1 f pξ
2
rt2jpiq,t2jpiq`1sqrti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

,

where rt1jpiq, t1jpiq`1s is the unique interval from mesh M 1 which contains the finer interval rti, ti`1s from mesh
M . We continue

|RpM 1q ´ RpM2q| ď

n
ÿ

i“1 max
s,tPrt1jpiq,t1jpiq`1s |f ptq ´ f psq|rti`1 ´ tis `

n
ÿ

i“1 max
s,tPrt2jpiq,t2jpiq`1s |f ptq ´ f psq|rti`1 ´ tis

ď

n
ÿ

i“1 εrti`1 ´ tis `
n
ÿ

i“1 εrti`1 ´ tis “ 2εpb´ aq

Since ε ą 0 was arbitrary, it follows that the Riemann sums are Cauchy, and hence converge by completenessof R.
8.1.2 Line Integral for C-valued FunctionsLet U Ď C be open and nonempty, γ Ď U a curve with smooth parametrization zptq, t P ra, bs.

58



Suppose f : γ Ñ C is continuous. Then the line integral
ş

γ f pzqdz of f on curve γ is defined as the limit ofRiemann sums
n
ÿ

i“1 f pzpξiqqrzpti`1q ´ zptiqs,

where a “ t1 ă t2 ă ¨ ¨ ¨ ă tn`1 “ b, ξi P rti, ti`1s, and the limit is taken as the mesh size maxi“1,¨¨¨ ,n |ti`1´ ti|tends to 0.To show the limit exists10, we make use of the C 1-smoothness of z by writing
n
ÿ

i“1 f pzpξrti,ti`1sqqrzpti`1q ´ zptiqs “
n
ÿ

i“1 f pzpξrti,ti`1sqqzpti`1q ´ zptiq
ti`1 ´ ti

rti`1 ´ tis. (9)
Again, take two meshes M 1 “ tt11, ¨ ¨ ¨ , t1n1`1u and M2 “ tt21 , ¨ ¨ ¨ , t2n2`1u of sizes δ 1 and δ2, and amalgamatethe two together to obtain a finer mesh M “ tt1, ¨ ¨ ¨ , tn`1u of size δ :“ mintδ 1, δ2u. Denote by RpMq theRiemann sum (9) for mesh M .Fix ε ą 0. By differentiability of z at t P ra, bs, there is some δ1pε, tq ą 0 for which

|s´ t| ď δ1pε, tq ñ

ˇ

ˇ

ˇ

ˇ

|zptq ´ zpsq|
t ´ s ´ z1ptq

ˇ

ˇ

ˇ

ˇ

ď ε.

By compactness of ra, bs, we obtain a uniform size δ1pεq ą 0 for which the above implication holds. So when
δ 1, δ2 ď δ1pεq, for mesh M , we have

ˇ

ˇ

ˇ

ˇ

|zpti`1q ´ zptiq|
ti`1 ´ ti

´ z1ptiq
ˇ

ˇ

ˇ

ˇ

ď ε.

And similarly for meshes M 1 and M2.Since z is C 1, its first derivative z1 is C 0, and hence uniformly continuous on compact interval ra, bs. So thereis some δ2pεq ą 0 for which
|s´ t| ď δ2pεq ñ |z1ptq ´ z1psq| ď ε.

By uniform continuity of continuous function f ˝ z on compact interval ra, bs, there is some δ0pεq ą 0 for which
|s´ t| ď δ0pεq ñ |f pzptqq ´ f pzpsqq| ď ε.

10Another, perhaps simpler, way to show convergence of Riemann sums is to make the Cauchy-ness argument directly for
řn
i“1 fpzpξrti,ti`1sqqrzpti`1q ´ zptiqs. We will use C 1-smoothness of the parametrization z for γ to establish řn

i“1 |zpti`1q ´ zptiq| Ñlengthpγq ă `8, which is not generally true for continuous curves.
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When δ 1, δ2 ď mintδ0pεq, δ1pεq, δ2pεqu, we have
|RpM 1q ´ RpM2q| ď |RpM 1q ´ RpMq| ` |RpMq ´ RpM2q|

“

ˇ

ˇ

ˇ

ˇ

ˇ

n1
ÿ

i“1 f pzpξ
1
rt1i ,t1i`1sqq

zpt1i`1q ´ zpt1iq
t1i`1 ´ t1i

rt1i`1 ´ t1i s ´
n
ÿ

i“1 f pzpξrti,ti`1sqqzpti`1q ´ zptiq
ti`1 ´ ti

rti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pzpξrti,ti`1sqqzpti`1q ´ zptiq
ti`1 ´ ti

rti`1 ´ tis ´
n2
ÿ

i“1 f pzpξ
2
rt2i ,t2i`1sqq

zpt2i`1q ´ zpt2i q
t2i`1 ´ t2i

rt2i`1 ´ t2i s

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

n1
ÿ

i“1 f pzpξ
1
rt1i ,t1i`1sqq

zpt1i`1q ´ zpt1iq
t1i`1 ´ t1i

rt1i`1 ´ t1i s ´
n1
ÿ

i“1 f pzpξ
1
rt1i ,t1i`1sqqz1pt1iqrt1i`1 ´ t1i s

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n1
ÿ

i“1 f pzpξ
1
rt1i ,t1i`1sqqz1pt1iqrt1i`1 ´ t1i s ´

n
ÿ

i“1 f pzpξrti,ti`1sqqz1ptiqrti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

` 2 ˇˇˇ
ˇ

ˇ

n
ÿ

i“1 f pzpξrti,ti`1sqqz1ptiqrti`1 ´ tis ´
n
ÿ

i“1 f pzpξrti,ti`1sqqzpti`1q ´ zptiq
ti`1 ´ ti

rti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pzpξrti,ti`1sqqz1ptiqrti`1 ´ tis ´
n2
ÿ

i“1 f pzpξ
2
rt2i ,t2i`1sqqz1pt2i qrt2i`1 ´ t2i s

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n2
ÿ

i“1 f pzpξ
2
rt2i ,t2i`1sqqz1pt2i qrt2i`1 ´ t2i s ´

n2
ÿ

i“1 f pzpξ
2
rt2i ,t2i`1sqq

zpt2i`1q ´ zpt2i q
t2i`1 ´ t2i

rt2i`1 ´ t2i s

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n1
ÿ

i“1 |f pzpξ
1
rt1i ,t1i`1sqq|εrt1i`1 ´ t1i s

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pzpξ
1
rt1jpiq,t1jpiq`1sqqz1pt1jpiqqrti`1 ´ tis ´

n
ÿ

i“1 f pzpξrti,ti`1sqqz1ptiqrti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

` 2 n
ÿ

i“1 |f pzpξrti,ti`1sqq|εrti`1 ´ tis

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1 f pzpξrti,ti`1sqqz1ptiqrti`1 ´ tis ´
n
ÿ

i“1 f pzpξ
2
rt2jpiq,t2jpiq`1sqqz1pt2jpiqqrti`1 ´ tis

ˇ

ˇ

ˇ

ˇ

ˇ

`

n2
ÿ

i“1 |f pzpξ
2
rt2i ,t2i`1sqq|εrt2i`1 ´ t2i s.

By denoting C1 :“ maxtPra,bs |f pzptqq|, we continue
|RpM 1q ´ RpM2q| ď 4C1εpb´ aq ` 2 n

ÿ

i“1 max
s,tPrt1jpiq,t1jpiq`1s |f pzpsqqz

1psq ´ f pzptqqz1ptq|rti`1 ´ tis.

By denoting C2 :“ maxtPra,bs |z1ptq|, we havemax
s,tPrt1jpiq,t1jpiq`1s |f pzpsqqz

1psq ´ f pzptqqz1ptq|

ď max
s,tPrt1jpiq,t1jpiq`1s |f pzpsqqz

1psq ´ f pzpsqqz1ptq| ` |f pzpsqqz1ptq ´ f pzptqqz1ptq|

ď max
s,tPrt1jpiq,t1jpiq`1sC1|z1psq ´ z1ptq| ` C2|f pzpsqq ´ f pzptqq|

ďC1ε ` C2ε.Now we have
|RpM 1q ´ RpM2q| ď4C1εpb´ aq ` 2 n

ÿ

i“1pC1ε ` C2εqrti`1 ´ tis

“4C1εpb´ aq ` 2pC1ε ` C2εqpb´ aq “ εp6C1 ` 2C2qpb´ aq.
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Since ε ą 0 was arbitrary, it follows that the Riemann sums are Cauchy and hence converge by completenessof C.
8.1.3 Line Integral for B-valued FunctionsNow suppose L : γ Ñ B is continuous. Then the line integral

ş

γLpzqdz on curve γ is defined as the limit ofthe Riemann sums
n
ÿ

i“1 Lpzpξiqqrzpti`1q ´ zptiqs,

where a “ t1 ă t2 ă ¨ ¨ ¨ ă tn`1 “ b, ξi P rti, ti`1s, and the limit in B is taken as maxi“1,¨¨¨ ,n |ti`1 ´ ti| Ñ 0.To see the Riemann sums are Cauchy, we proceed exactly the same way as we did for line integral for C-valuedfunctions, replacing |f pzptqq| by }Lpzptqq}. Then, completeness of B gives convergence.If ρ : ra, bs Ñ ra, bs, ρ1 ą 0, is a reparametrization, then the line integral
ż

γ
Lpz̃qdz̃ “ ż b

a
Lpz̃ptqqz̃1ptqdt

of L on curve γ reparametrized by z̃ “ z ˝ ρ coincides with
ż

γ
Lpzqdz “ ż b

a
Lpzptqqz1ptqdt

by change of variables s “ ρptq. Indeed,
ż

γ
Lpz̃qdz̃ “ ż b

a
Lpz̃ptqqz̃1ptqdt “ ż b

a
Lpz ˝ ρptqqz1pρptqqρ1ptqdt “ ż b

a
Lpzpsqqz1psqds “ ż

γ
Lpzqdz.

This shows that the line integral şγ Lpzqdz of L on curve γ is independent of the smooth parametrization z .
Lemma 8.1 (Ex 3.1). Suppose L : γ Ñ B is continuous. For any φ P L˚, we have

φ
„
ż

γ
Lpzqdz “ ż

γ
φrLpzqsdz.

For any T P B, we have

T
„
ż

γ
Lpzqdz “ ż

γ
T rLpzqsdz.

Proof. As φ and T are both continuous, it is easy to see that they commute with the limit of the Riemannsums.
8.1.4 Differentiation

Theorem 8.2 (Analyticity Theorem). For any complex family L : U Ñ B of bounded linear operators Lz : L Ñ L,
z P U Ď C, on a complex Banach space L, the following two notions of analyticity are equivalent.

1. Weak Analyticity. For any φ P B˚, the function φrLp¨qs : U Ñ C is holomorphic.

2. Strong Analyticity. For every z P U, there is some L1pzq P B, called the “derivative of L at z”, such that
›

›

›

›

Lpz ` hq ´ Lpzq
h ´ L1pzq

›

›

›

›

|h|Ñ0
ÝÝÝÑ 0

A proof is given in Sarig’s Appendix, and we will prove it later.
Lemma 8.3 (Rules of Differentiation, Ex 3.2). Suppose L, L1, L2 : U Ñ B are analytic.

1. pL1pzq ` L2pzqq1 “ L11pzq ` L12pzq;
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2. pL1pzq ˝ L2pzqq1 “ L11pzq ˝ L2pzq ` L1pzq ˝ L12pzq;
3. when Lz is invertible for every z P U, then pL´1

z q
1 “ ´L´1

z ˝ L1z ˝ L´1
z ;

4. if φ P B˚, then pφ ˝ Lzq1 “ φ ˝ L1z .

Proof. 1. Note
›

›

›

›

pL1 ` L2qpz ` hq ´ pL1 ` L2qpzq
h ´ pL11pzq ` L12pzqq

›

›

›

›

“

›

›

›

›

L1pz ` hq ´ L1pzq
h ´ L11pzq ` L2pz ` hq ´ L2pzq

h ´ L12pzq
›

›

›

›

ď

›

›

›

›

L1pz ` hq ´ L1pzq
h ´ L11pzq

›

›

›

›

`

›

›

›

›

L2pz ` hq ´ L2pzq
h ´ L12pzq

›

›

›

›

|h|Ñ0
ÝÝÝÑ 0.

2. Note
›

›

›

›

L1pz ` hq ˝ L2pz ` hq ´ L1pzq ˝ L2pzq
h ´ pL11pzq ˝ L2pzq ` L1pzq ˝ L12pzqq

›

›

›

›

ď

›

›

›

›

L1pz ` hq ˝ L2pz ` hq ´ L1pz ` hq ˝ L2pzq
h ´ L1pz ` hq ˝ L12pzq

›

›

›

›

` }L1pz ` hq ˝ L12pzq ´ L1pzq ˝ L12pzq}
`

›

›

›

›

L1pz ` hq ˝ L2pzq ´ L1pzq ˝ L2pzq
h ´ L11pzq ˝ L2pzq

›

›

›

›

ď}L1pz ` hq}
›

›

›

›

L2pz ` hq ´ L2pzq
h ´ L12pzq

›

›

›

›

` }L1pz ` hq ´ L1pzq}}L12pzq}
`

›

›

›

›

L1pz ` hq ´ L1pzq
h ´ L11pzq

›

›

›

›

}L2pzq} |h|Ñ0
ÝÝÝÑ 0.

3. Note
›

›

›

›

L´1pz ` hq ´ L´1pzq
h ` L´1pzq ˝ L1pzq ˝ L´1pzq

›

›

›

›

ď

›

›

›

›

L´1pz ` hq ´ L´1pzq
h ` L´1pz ` hq ˝ L1pzq ˝ L´1pzq

›

›

›

›

`
›

›L´1pzq ˝ L1pzq ˝ L´1pzq ´ L´1pz ` hq ˝ L1pzq ˝ L´1pzq››
“

›

›

›

›

L´1pz ` hq ˝
„

Lpzq ´ Lpz ` hq
h ` L1pzq



˝ L´1pzq
›

›

›

›

`
›

›rL´1pzq ´ L´1pz ` hqs ˝ L1pzq ˝ L´1pzq››
ď}L´1pz ` hq}

›

›

›

›

Lpz ` hq ´ Lpzq
h ´ L1pzq

›

›

›

›

}L´1pzq} ` }L´1pzq ´ L´1pz ` hq}}L1pzq}}L´1pzq}.
Since every Lz , z P U is invertible, so is every Lpz ` hq for small h by openness of U . It follows by OpenMapping Theorem that these inverses are also bounded linear operators on L. Hence, the above estimates tendto 0 as |h| Ñ 0, by definition of L1pzq. This proves the formula.
4. Note

›

›

›

›

φ ˝ Lpz ` hq ´ φ ˝ Lpzq
h ´ φ ˝ L1pzq

›

›

›

›

ď }φ}
›

›

›

›

Lpz ` hq ´ Lpzq
h ´ L1pzq

›

›

›

›

|h|Ñ0
ÝÝÝÑ 0.

Theorem 8.4 (Cauchy Integral Formula). If L : U Ñ B is analytic on U, then L is differentiable infinitely many
times on U. Moreover, for any z P U and any simple closed smooth curve γ Ď U around z, we have

Lpzq “ 12πi
ż

γ

Lpξq
ξ ´ z dξ, and Lpnqpzq “ n!2πi

ż

γ

Lpξq
pξ ´ zqn`1 dξ.
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Proof. By weak analyticity, φrLp¨qs : U Ñ C is holomorphic for any φ P B˚. By Exercise 3.2.4 and stronganalyticity, we have ddz φrLpzqs “ φrL1pzqsis holomorphic too. In other words, L1pzq is (weak) analytic. Induction gives that Lpzq is differentiable infinitelymany times on U .For any φ P B˚, note
φ
„ 12πi

ż

γ

Lpξq
ξ ´ z dξ “ 12πi

ż

γ

φrLpξqs
ξ ´ z dξ “ φrLpzqs,

by the usual Cauchy Integral Formula for the holomorphic function φrLpzqs : U Ñ C. Since this equality holdsfor all φ P B˚, and bounded linear functionals separate points, see Proposition B.8, it follows that12πi
ż

γ

Lpξq
ξ ´ z dξ “ Lpzq.

The formula for higher derivatives is proved exactly the same way using the usual Cauchy Integral Formula forholomorphic function φrLpzqs : U Ñ C.
Proposition 8.5 (Ex 3.3). If L : U Ñ B is analytic and γ is a simple closed smooth contractible curve in U,
then

ż

γ
Lpzqdz “ 0.

Proof. Fix any φ P B˚. By weak analyticity, the function φrLp¨qs : U Ñ C is holomorphic. It then follows fromExercise 3.1 and a basic property of holomorphic functions that
φr
ż

γ
Lpzqdzs “ ż

γ
φrLpzqsdz “ 0 “ φr0s.

Since this holds for any φ P B˚ and bounded linear functionals separate points, the asserting follows.
Proposition 8.6 (Ex 3.4). If a sequence tTnuně0 Ď B satisfies }Tn} “ Oprnq for some r ą 0, then the power
series

ÿ

ně0pz ´ aqnTn

converges and is analytic on tz P U : |z ´ a| ă 1{ru.
Proof. The big-O notation means that there are C,N ą 0 such that

}Tn} ď Crn, @n ě N.Fix any z P U with |z ´ a| ă 1{r . Then,
ÿ

ně0 }pz ´ aqnTn} “
N´1
ÿ

n“0 |z ´ a|n}Tn} `
ÿ

něN
|z ´ a|n}Tn} ď

N´1
ÿ

n“0 |z ´ a|n}Tn} `
ÿ

něN
|z ´ a|nCrn.

Since |z ´ a|r ă 1 by choice of z , we conclude the power series converges absolutely on tz : |z ´ a| ă 1{ru.Write T pzq :“ ř

ně0pz ´ aqnTn for z P U with |z ´ a| ă 1{r . Fix φ P B˚. By continuity and linearity of φ, wehave
φrT pzqs “

ÿ

ně0pz ´ aqnφrTns.

Since the power series for φrT p¨qs converges absolutely
ÿ

ně0 |pz ´ aqnφrTns| ď
ÿ

ně0 |z ´ a|n}φ}}Tn} “ }φ}
ÿ

ně0 }pz ´ aqnTn} ă `8

on tz P U : |z ´ a| ă 1{ru, it follows from properties of holomorphic functions and power series that φrT p¨qsis holomorphic on tz P U : |z ´ a| ă 1{ru. This implies T is (weak) analytic on tz P U : |z ´ a| ă 1{ru.
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Proposition 8.7 (Ex 3.5). A family L : U Ñ B is analytic on open set U Ď C if and only if for each a P U,
there is a sequence Lnpaq P B, n ě 0, and a radius rpaq ą 0 such that

}Lnpaq} “ Oprpaq´nq and Lpzq “
ÿ

ně0pz ´ aqnLnpaq on tz P U : |z ´ a| ă rpaqu.

Proof. pðq By Exercise 3.4, we have L analytic on tz P U : |z ´ a| ď 1{rpaqu for each a P U . This impliesthat L is analytic on the entire open set U .
pñq Fix a P U and take Rpaq ą 0 with Dpa, Rpaqq Ď U . Define

F pzq :“ Lpz ` aq, z P Dp0, Rpaqq.
Note F is analytic on Dp0, Rpaqq. Fix z P Dp0, Rpaqq and let r :“ |z|`Rpaq2 . For any ξ P BDp0, rq, we have
ˇ

ˇ

ˇ

z
ξ

ˇ

ˇ

ˇ
ă 1. So 1

ξ ´ z “
1
ξ

11´ z
ξ
“

1
ξ
ÿ

ně0
ˆ

z
ξ

˙n
.

By Cauchy Integral Formula, we have
F pzq “ 12πi

ż

BDp0,rq
F pξq
ξ ´ z dξ “ 12πi

ż

BDp0,rq F pξq
1
ξ
ÿ

ně0
ˆ

z
ξ

˙n dξ
“

ż

BDp0,rq
ÿ

ně0
12πiF pξq1ξ

ˆ

z
ξ

˙n dξ.
It is easy to see that řně0 12πiF pξq 1

ξ

´

z
ξ

¯n converges absolutely and uniformly on BDp0, rq and hence we mayinterchange the limit and integral. We continue
F pzq “

ÿ

ně0 z
n
ż

BDp0,rq
12πi F pξqξn`1 dξ.

Now returning to L, we have
Lpzq “ F pz ´ aq “

ÿ

ně0pz ´ aqn
ż

BDpa,rq

12πi Lpξq
pξ ´ aqn`1 dξ on tz P U : |z ´ a| ă Rpaqu.

Take Lnpaq :“ ş

BDpa,rq
12πi Lpξq
pξ´aqn`1 dξ . Note Rpaq2 ď r ă Rpaq and hence

}Lnpaq} ď 2πr 12π r´pn`1q max
ξPBDpa,rq

}Lpξq} ď
ˆ

Rpaq2
˙´n max

ξPDpa,Rpaqq
}Lpξq}.

This shows }Lnpaq} “ Oprpaq´nq where rpaq “ Rpaq{2. The proof is complete.
8.2 The Resolvent and EigenprojectionsRecall the spectrum of L P B is defined as

specpLq :“ tλ P C : pλI ´ Lq has no (bounded) inverseu.
Proposition 8.8 (Ex 3.6). The spectrum specpLq of any L P B is a compact set in C.

Proof. 1. If }L} ă 1, then pI ´ Lq has a bounded inverse given by

pI ´ Lq´1 “ I ` L` L2 ` ¨ ¨ ¨ .
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Indeed, note ř8

i“0 }Li} ď ř8

i“0 }L}i ă 11´}L} ă `8, and hence the partial sums
Ln :“ n

ÿ

i“0 L
i

are Cauchy. It follows from the completeness of Banach space B that Ln converges to some L8 P B, and inparticular, Ln Ñ 0. On the other hand,
pI ´ LqL8 “ lim

nÑ`8
pI ´ LqLn “ lim

nÑ`8
Ln ´ LLn “ lim

nÑ`8
pI ` L` L2 ` ¨ ¨ ¨ ` Lnq ´ pL` L2 ` ¨ ¨ ¨ ` Ln ` Ln`1q

“I ´ lim
nÑ`8

Ln`1 “ I

A similar argument shows that L8pI ´ Lq “ I . We conclude L8 “ pI ´ Lq´1.
2. pzI ´ Lq has a bounded inverse provided |z| sufficiently large.For |z| ą 0, write zI ´ L “ zpI ´ z´1Lq. When |z| ą }L}, we have }z´1L} “ |z|´1}L} ă 1 and hence, by item1, pI ´ z´1Lq has a bounded inverse; in this case, so does pzI ´ Lq.It follows that specpLq Ď Dp0, }L}q. In other words, specpLq is bounded11 in C. It remains to show that specpLqis closed in C.
3. Show that if pI ´ Lq has a bounded inverse, then so does any pI ´ L1q with }L1 ´ L} sufficiently small.We show that for any invertible F P BpLq, we have F ` G also invertible, provided }G} sufficiently small.Indeed, note

F ` G “ F pI ` F´1Gq.When }G} ă }F´1}´1 (note }F´1} ă `8 by Open Mapping Theorem), we have
}F´1G} ď }F´1}}G} ă 1,

and hence pI ` F´1Gq is invertible by item 1. This implies F ` G is invertible too.In fact, if f is any Lipeomorphism on a Banach space X and g is a Lipschitz function with sufficiently smallLipschitz constant, then f ` g is another Lipeomorphism. Indeed, since
f ` g “ f ˝ pid` f´1 ˝ gq,

it follows that when Lippgq ă pLippf´1qq´1,we have Lippf´1 ˝ gq ď Lippf´1qLippgq ă 1, and hence pid` f´1 ˝ gq is a Lipeomorphism by Lipschitz InverseFunction Theorem (a consequence of the Banach Fixed Point Theorem).
4. Take a sequence tznun Ď specpLq with zn Ñ z for some z P C, and we show z P specpLq.If z “ 0, then we need to show that p0I ´ Lq “ ´L has no bounded inverse, or equivalently, that L has nobounded inverse. Suppose the contrary. Since pznI ´ Lq has no bounded inverse, it follows that

pznI ´ LqL´1 “ znL´1 ´ I

has no bounded inverse; otherwise, L´1ppznI´LqL´1q´1 would be a bounded inverse for pznI´Lq. Equivalently,
I ´ znL´1 has no bounded inverse. Since

}znL´1 ´ 0} “ |zn|}L´1} nÑ`8
ÝÝÝÝÑ |z|}L´1} “ 0,

it follows from item 3 that I “ I ´ 0 has no bounded inverse, a contradiction. We conclude in this case L hasno bounded inverse, as desired.
11It is worth noting that Sarig purposefully proved boundedness of the spectrum from scratch, rather than make use of estimates

ρpLq “ lim
nÑ`8

n
a

}Ln} “ infně1 n
a

}Ln}, in order to avoid circular arguments. More specifically, the proof of this limiting equality hingeson the analycity of the resolvent, which in turn assumes compactness of the spectrum.
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When z ‰ 0, we assume without loss of generality that zn ‰ 0 for all n. If ´I ´ L
zn

¯ were to have a bounded
inverse, then z´1

n

´

I ´ L
zn

¯´1 would be a bounded inverse for pznI ´ Lq, contradicting zn P specpLq; we thusconclude that each ´

I ´ L
zn

¯ has no bounded inverse. But since
›

›

›

›

L
zn
´
L
z

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

1
zn
´

1
z

ˇ

ˇ

ˇ

ˇ

}L} nÑ`8
ÝÝÝÝÑ 0,

it follows from item 3 that `I ´ L
z
˘ has no bounded inverse. In other words, z P specpLq. This shows specpLq isclosed and completes the proof.

Definition 8.9 (Resolvent). Given a bounded linear operator L : L Ñ L on Banach space L, on the complementof its spectrum, we define the resolvent
R : CzspecpLq Ñ B, z ÞÑ pzI ´ Lq´1.

Proposition 8.10 (Properties of the Resolvent, Ex 3.7). 1. Commutation. RpzqL “ LRpzq.

2. Resolvent Identity. Rpwq ´ Rpzq “ pz ´ wqRpzqRpwq.

3. Neumann’s Expansion. Rpzq “
ř8

n“0p´1qnpz´ z0qnRpz0qn`1, for any z0 P CzspecpLq and z sufficiently
close to z0.

4. Analyticity. The resolvent R : CzspecpLq Ñ B is an analytic function.

Remark 8.11. It makes sense to speak of the analyticity of the resolvent, because we know CzspecpLq is anonempty open set from compactness of specpLq.
Proof. 1. Note

RpzqL “ pzI ´ Lq´1L “ pzI ´ Lq´1LpzI ´ LqpzI ´ Lq´1 “ pzI ´ Lq´1pzI ´ LqLpzI ´ Lq´1 “ LRpzq.

2. Note
Rpwq ´ Rpzq “pwI ´ Lq´1 ´ pzI ´ Lq´1 “ pzI ´ Lq´1rpzI ´ Lq ´ pwI ´ LqspwI ´ Lq´1

“pzI ´ Lq´1rz ´ wspwI ´ Lq´1 “ pz ´ wqRpzqRpwq.

3. Fix any z0 P CzspecpLq. Since specpLq is closed in C, it follows that its complement CzspecpLq is open. Sotake z P CzspecpLq so close to z0 that
|z ´ z0|}Rpz0q} ă 1.Now we start from the Resolvent Identity
Rpzq ´ Rpz0q “pz0 ´ zqRpz0qRpzq

Rpzq ´ pz0 ´ zqRpz0qRpzq “Rpz0q
rI ´ pz0 ´ zqRpz0qsRpzq “Rpz0qBy choice of z , we have
}pz0 ´ zqRpz0q} “ |z0 ´ z|}Rpz0q} ă 1,and hence, by Ex 3.6.1, the operator rI´pz0´ zqRpz0qs has a bounded inverse given by the fundamental seriesexpansion.
Rpzq “rI ´ pz0 ´ zqRpz0qs´1Rpz0q

“

«

8
ÿ

n“0pz0 ´ zqnRpz0qn
ff

Rpz0q
“

8
ÿ

n“0p´1qnpz ´ z0qnRpz0qn`1.
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4. By choice of z from item 3, we have Tn :“ p´1qnRpz0qn`1 satisfying
}Tn} “

›

›p´1qnRpz0qn`1›
› ď }Rpz0q}n`1 ă }Rpz0q}|z ´ z0|´n.By Ex 3.5, we conclude R analytic on disks tz P CzspecpLq : |z ´ z0| ă }Rpz0q}´1u for any z0 P CzspecpLq. Inother words, R is analytic on CzspecpLq, as required.

Proposition 8.12 (Spectrum is Nonempty). The spectrum specpLq of any bounded linear operator L : L Ñ L
on a Banach space L is nonempty.

Proof. Suppose the contrary. Then, the resolvent R is defined on the entire C and is thus is an entire function.Also, for any |z| ą }L}, we have
Rpzq “ pzI ´ Lq´1 “ rzpI ´ z´1Lqs´1 “ z´1pI ´ z´1Lq´1.

As z Ñ 8, note z´1 Ñ 0, z´1L Ñ 0, pI ´ z´1Lq´1 Ñ I and hence Rpzq Ñ 0. This shows R vanishes at 8,and in particular, must be bounded. Liouville’s Theorem thus implies R is a constant function.However, ddz Rpzq “ ´pzI ´ Lq´1 ˝ I ˝ pzI ´ Lq´1 “ ´pzI ´ Lq´2 ı 0,
a contradiction. We conclude specpLq ‰ H.
Proposition 8.13 ([Con85] VII.3.8). For any bounded linear operator L : L Ñ L on a Banach space L, the limitlim
nÑ`8

}Ln}1{n exists and equals ρpLq.

Proof. Let G :“ tz P C : z´1 P CzspecpLqu Y t0u, and define
f : Gzt0u Ñ BpLq, z ÞÑ pz´1I ´ Lq´1.

As λÑ8, note pI ´ λ´1Lq Ñ I , λ´1 Ñ 0 and hence pλI ´ Lq´1 “ λ´1pI ´ λ´1Lq´1 Ñ 0. This shows f pzq Ñ 0as z Ñ 0, and hence 0 is a removable singularity. By defining f p0q “ 0, we have f analytic on G .Take its power series expansion for |z| ă }L}´1
f pzq “ pz´1 ´ Lq´1 “ rz´1pI ´ zLqs´1 “ zpI ´ zLq´1 “ z

8
ÿ

n“0 z
nLn.

The largest radius of convergence for this power series is
R “distp0, BGq “ distp0, specpLq´1q, specpLq´1 :“ tz´1 : z P specpLqu.
“ inft|z| : z´1 P specpLqu “ ρpLq´1.

On the other hand, by Sarig Exercise 3.5, we have }Ln} “ OpR´nq, that is,
}Ln} ď CR´n, for some C ą 0.

This yields R´1 ě C´1}Ln}1{n for every n ě 1, and hence
ρpLq “ R´1 “ lim sup

nÑ`8
}Ln}1{n.

Now if z P C and n ě 1, then
znI ´ Ln “ pzI ´ Lqpzn´1I ` zn´2L` ¨ ¨ ¨ ` Ln´1q “ pzn´1I ` zn´2L` ¨ ¨ ¨ ` Ln´1qpzI ´ Lq.

If pznI ´ Lnq is invertible, then pznI ´ Lnq´1pzn´1I ` zn´2L ` ¨ ¨ ¨ ` Ln´1q is the inverse of pzI ´ Lq. For any
z P specpLq, we have pzI ´ Lq non-invertible, and hence znI ´ Ln “ znpI ´ z´nLnq is also non-invertible for all
n ě 1. This implies

}z´nLn} “ |z|´n}Ln} ă 1, @z P specpLq,
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and hence |z| ď }Ln}1{n. We conclude
ρpLq ď lim inf

nÑ8
}Ln}1{n “ lim sup

nÑ`8
}Ln}1{n “ ρpLq,

and hence the limit lim
nÑ`8

}Ln}1{n exists and equals ρpLq.
Lemma 8.14 (Fekete’s Subadditive Lemma). If a sequence tanuně1 Ď R is subadditive, i.e.,

an`m ď an ` am, @m, n ě 1,
then the limit lim

nÑ`8
an{n exists and equals infně1 an{n.

Proof. Let L :“ infně1 an{n and fix L1 ą L. Choose k ě 1 with ak{k ă L1. For n ą k , by Division Algorithm,there are integers pn ě 1 and qn P r0, k ´ 1s such that n “ pnk ` qn. By subadditivity, we have
an “ apnk`qn ď pnak ` aqn .Dividing both sides by n yields

an
n ď

pnk
n

ak
k `

aqn
n .

As nÑ `8, we have pnk
n Ñ 1, aqn

n ď
maxtai :i“0,¨¨¨ ,k´1u

n Ñ 0, and hence
L ď lim

nÑ`8

an
n ď

ak
k ă L1, @L1 ą L.

The assertion follows.
Corollary 8.15. For any bounded linear operator L : L Ñ L on a Banach space L,

ρpLq “ lim
nÑ`8

}Ln}1{n “ inf
ně1 }Ln}1{n.

Proof. Since }Ln`m} “ }LnLm} ď }Ln}}Lm}, it follows that log }Ln} is subadditive. By Fekete’s SubadditiveLemma, we have lim
nÑ`8

log }Ln}
n “ inf

ně1 log }Ln}
n .

Exponentiating both sides yields lim
nÑ`8

}Ln}1{n “ infně1 }Ln}1{n, as required.
Theorem 8.16 (Separation of Spectrum). Suppose the spectrum specpLq of a bounded linear operator L : L Ñ L
on Banach space L admits a decomposition into the disjoint union

specpLq “ Σin 9YΣout
of two compact pieces Σin and Σout, and γ is a smooth closed curve in CzspecpLq with Σin inside and Σout
outside. Then,

1. The operator defined by line integral

P :“ 12πi
ż

γ
pzI ´ Lq´1dz

is a projection, i.e., P2 “ P. Hence, L “ kerpPq ‘ ImpPq.
2. PL “ LP. So, kerpPq and ImpPq are both L-invariant.

3. specpL|ImpPqq “ Σin and specpL|kerpPqq “ Σout.A proof is given in Sarig’s Appendix, and we will prove it later.
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Definition 8.17 (Eigenprojection). The projection operator P “ 12πi şγpzI´Lq´1dz is called the eigenprojection
of Σin.
Corollary 8.18. When L has a spectral gap with representation L “ λP`N, the eigenprojection Pλ of Σin “ tλu
equals P.

Proof. Note λ is a simple eigenvalue of L : L Ñ L with one-dimensional eigenspace Epλq “ ImpPq, and
L “ kerpPq ‘ ImpPq. We claim ImpPλq Ď ImpPq.Suppose not. Then, pI´PqImpPλq ‰ t0u is a closed nontrivial L-invariant linear subspace. Now ρpNq ă |λ| im-plies λ R specpN|kerpPqq “ specpL|kerpPqq; it then follows from pI´PqImpPλq Ď kerpPq that specpL|pI´PqImpPλqq ĎspecpL|kerpPqq and hence

λ R specpL|pI´PqImpPλqq.On the other hand, note specpL|pI´PqImpPλqq Ď specpL|ImpPλqq. But since12
H ‰ specpL|pI´PqImpPλqq Ď specpL|ImpPλqq “ Σin “ tλu,

we must have specpL|pI´PqImpPλqq “ tλu, a contradiction. We conclude ImpPλq Ď ImpPq. But since specpL|ImpPλqq “Σin “ tλu, it follows that ImpPλq is nontrivial and hence must coincide with the one-dimensional space ImpPq.Now that P and Pλ are both projections to the same space Epλq, we conclude P “ Pλ, as desired.
More generally, if P2 “ P , Q2 “ Q and ImpPq “ ImpQq, then P “ Q.Indeed, any v P L can be written as

v “ Pv ` pI ´ Pqv,where Pv P ImpPq and pI ´Pqv P kerpPq. This shows L “ kerpPq ` ImpPq. To see the sum is direct, take any
v P kerpPq X ImpPq. So Pv “ 0 and v “ Pu for some u P L, hence v “ Pu “ P2u “ PpPuq “ Pv “ 0, Weconclude L “ kerpPq ‘ ImpPq. But the same argument for Q yields

v “ Qv ` pI ´ Qqv,

where Qv P ImpQq “ ImpPq and so we must have Pv “ Qv because the sum is direct (the representation isunique). This shows Pv “ Qv for any v P L and so P “ Q.
8.3 Analytic Perturbation Theorem
Theorem 8.19 (Analytic Perturbation Theorem). Let U Q 0 be an open subset of C and L : U Ñ BpLq, z ÞÑ Lz
be an analytic family of bounded linear operators Lz : L Ñ L on a Banach space L. If L0 has spectral gap,
then there is some ε ą 0 such that Lz has spectral gap whenever |z| ă ε. Moreover, there are λz , Pz , Nz
analytic on tz P C : |z| ă εu such that

1. Lz “ λzPz `Nz ;

2. Pz P BpLq with P2
z “ Pz and dimpImpPzqq “ 1;

3. PzNz “ NzPz “ 0;

4. ρpNzq ă |λz | ´ κ for some κ ą 0 independent of z P tz P C : |z| ă εu.

Proof. Since L0 has spectral gap, we have
specpL0q “ tλ0u 9YΣ, Σ Ď tz : |z| ă ρpL0q “ |λ0|u.

Take a small circle γ Ď CzspecpL0q with λ0 inside γ and Σ outside γ .
Step 1. There is some ε1 ą 0 such that γ Ď CzspecpLzq for all z with |z| ă ε1.

12The spectrum specpLq must be nonempty, because otherwise the resolvent R : z ÞÑ pzI ´ Lq´1 would be defined on C, and so isan entire function. It is not difficult to show that R vanishes at 8 and so is bounded; Liouville’s Theorem implies R must be constant,contradicting the fact that R has nonzero first derivative R 1 ‰ 0. For more details, see [Con85] Theorem VII.3.6.
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Indeed, by choice of γ , we have that ξI ´ L0 has a bounded inverse for all ξ P γ . Ex 3.6.3 says that having abounded inverse is an open property in BpLq, that is, if F has a bounded inverse, then so does F `G , provided
}G} sufficiently small. This implies that

Λ :“ tpξ, zq P Cˆ C : pξI ´ Lzq has a bounded inverseu
is an open neighborhood of compact set γ ˆ t0u. By compactness, we produce a uniform size ε1 ą 0 for which
γ ˆ tz : |z| ă ε1u Ď Λ, as desired.
Step 2. For any |z| ă ε1,

Pz :“ 12πi
ż

γ
pξI ´ Lzq´1dξ

is a projection and PzLz “ LzPz . Moreover, there is ε2 P p0, ε1q such that Pz is analytic on tz : |z| ă ε2u.Indeed, fix z with |z| ă ε1. Step 1 gives γ Ď CzspecpLzq.If specpLzq does not intersect the region inside γ , then pξI ´ Lzq´1 is well-defined and hence analytic on aregion in which γ is contractible; we thus conclude Pz “ 0 by Ex 3.3. Then, trivially we have P2
z “ 02 “ 0 “ Pzand PzLz “ 0Lz “ 0 “ Lz0 “ LzPz .If specpLzq intersects the region inside γ , then Separation of Spectrum Theorem yields P2

z “ Pz and PzLz “
LzPz .On tz : |z| ă ε1u, the family Pz is well-defined and hence analytic.
Step 3. There is ε3 P p0, ε2q such that dimpImpPzqq “ 1 for all |z| ă ε3.We say P,Q P BpLq are similar if there is a linear isomorphism π of L such that P “ π´1Qπ .
Kato Lemma: If projections P,Q P BpLq have }P ´ Q} ă 1, then they are similar to each other.By continuity (from analyticity) of Pz , there is some ε3 P p0, ε2q such that }Pz ´ P0} ă 1 whenever |z| ă
ε3. Kato’s Lemma then yields linear isomorphism πz of L with Pz “ π´1

z P0πz and hence dimpImpPzqq “dimpImpP0qq “ 1.
Step 4. Definition of λz .Take |z| ă ε3. Since PzLz “ LzPz from Step 2, we have LpImpPzqq Ď ImpPzq. Since dimpImpPzqq “ 1, it followsthat linear map

Lz : ImpPzq Ñ ImpPzqtakes the form f ÞÑ λzf for some λz P C. This shows LzPz “ λzPz .To see λz depends analytically on z , take any f P Lz kerpP0q. By Hahn-Banach Theorem, there is some φ P L˚such that φpP0f q ą 0. By continuity (from analyticity) of Pz , there is ε4 P p0, ε3q such that
φpPzf q ą 0, @|z| ă ε4.

Now the expression
λz “

φpLzPzf q
φpPzf qshows that λz is analytic on tz : |z| ă ε4u.

Step 5. Definition of Nz .Define Nz :“ LzpI ´ Pzq. Note it is analytic on tz : |z| ă ε4u because both Lz and Pz are analytic there.Since P2
z “ Pz and LzPz “ PzLz from Step 2, we have

PzNz “ PzLzpI ´ Pzq “ PzpI ´ PzqLz “ pPz ´ P2
z qLz “ 0

and also
NzPz “ LzpI ´ PzqPz “ LzpPz ´ P2

z q “ 0.
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From LzPz “ λzPz in Step 4, we deduce
Lz “ Lz ´ LzPz ` LzPz “ LzpI ´ Pzq ` LzPz “ Nz ` λzPz .

It remains to show ρpNzq ă |λz |. Recall
ρpLq “ lim

nÑ`8
n
a

}Ln} “ inf
ně1 n

a

}Ln}.

Fix any δ ą 0. Applying the above estimate to N0 yields some n ě 1 so large that
n
b

}Nn0 } ă eδρpN0q.
Since z ÞÑ Nz is analytic on tz : |z| ă ε4u from Step 5, it follows that z ÞÑ n

a

}Nn
z } is continuous there. Sothere is ε5 P p0, ε4q such that

n
a

}Nn
z } ă eδ n

b

}Nn0 } ă e2δρpN0q, @|z| ă ε5.
By continuity (from analyticity) of z ÞÑ λz , there is ε6 P p0, ε5q such that

|λz | ą e´δ |λ0|, @|z| ă ε6.
Pick δ ą 0 so small that e3δρpN0q ă |λ0|. Then, we have

ρpNzq ď
n
a

}Nn
z } ă e2δρpN0q ă e´δ |λ0| ă |λz |, @|z| ă ε6.

Up to further shrinking ε6, we can make κ :“ min|z|ăε6 |λz | ´ e´δ |λ0| ą 0.
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9 Herbert: Conditional Expectation
Definition 9.1 (Conditional Expectation). Let pX, B , µq be a probability space, let D Ă B be a σ-algebra andlet f P L1pB q. The conditional expectation of f with respect to D is the function Erf |D s P L1pD q such that forall D P D we have

ż

D
fdµ “ ż

D
Erf |D sdµ

Theorem 9.2 (Existence and Uniqueness Of Conditional expectation ). Let pX, B , µq be a probability space, let
D Ă B be a σ-algebra and let f P L1pB q. The conditional expectation Erf |D s P L1pD q exists and is unique.

Proof. First we prove the existence, define the complex measure
ν : D Ñ C, D ÞÑ

ż

D
fdµ.

Remark 9.3. For every D P D . It is easy to check that this is indeed a complex measure. In fact: We have that
νpHq “

ż

H

fdµ “ 0,
as ν is a measure. Likewise let tEku be a countable disjoint family of sets. Then

νpYkEkq “
ż

YEk
fdµ “ ż 8

ÿ

k“1 f 1Ek dµ.
Now let

gn “
n
ÿ

k“1 f 1Ek ,then we have that gn Ñ f µ ´ a.e. and |gn| ď f P L1pB q so we can write
ż 8
ÿ

k“1 f 1Ek dµ “ ż lim
n
gndµ “ lim

n

ż

gndµ “ lim
n

ż n
ÿ

k“1 f 1Ekdµ “ lim
n

n
ÿ

k“1
ż

f 1Ekdµ “ 8
ÿ

k“1
ż

Ek
f dµ “ 8

ÿ

k“1 νpEkq.

This is finite and absolutely convergent as ş

|f |dµ ă 8 and hence ν is a complex measure.
Moreover if D P D is such that µpDq “ 0 then νpDq “ 0 as well. Then we have ν ! µ, the measure ν isabsolutely continuous with respect to measure µ. Therefore we can apply the Radon-Nikodym theorem to finda derivative g “ dνdµ P L1pD q. Then for every D P D

ż

D
gdµ “ νpDq “

ż

D
fdµ.

Thus g is the conditional expectation of f with respect to σ-algebra D .Now, to prove uniqueness, assume that g, h P L1pD q are both conditional expectations of f . Then for each
D P D we have

ż

D
gdµ “ ż

D
fdµ “ ż

D
hdµ

this implies that
ż

D
ph´ gqdµ “ 0.

If the following set tx P X : hpxq ´ gpxq ‰ 0u has positive measure then without loss of generality the set
tx P X : hpxq ´ gpxq ą 0u has positive measure. Hence there is some ε ą 0 such that the set Dε “ tx P
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X : hpxq ´ gpxq ą εu. has positive measure. Note that both h and g are measurable in D we conclude that
Dε “ tx P X : hpxq ´ gpxq ą εu “ tx P X : ph´ gqpxq ą εu P D and hence

0 ă εµpDεq ď

ż

Dε
ph´ gqdµ “ 0

which is a contradiction.
Proposition 9.4. Let pX, B , µq be a probability space, let D Ă B be a σ-algebra and let f P L1pB q be real
valued. The conditional expectation Erf |D s satisfies

inf
xPX

f pxq ď Erf |D spyq ď sup
xPX

f pxq a.s.

Proof. Fix ε ą 0 and let D “ ty P X : Erf |D spyq ă infxPX f pxq ´ εu P D . We have
µpDq inf

xPX
f pxq ď

ż

D
fdµ “ ż

D
Erf |D sdµ ď µpDqp inf

xPX
f pxq ´ εq.

Then we have εµpDq ď 0, and thus µpDq “ 0. Since ε ą 0 was arbitrary we conclude that almost surelyinfxPX f pxq ď Erf |D spyq.

Lemma 9.5. Let pX, B , µq be a probability space, let D Ă B be a σ-algebra and let f P L1pX, B q. Then almost
everywhere

|Erf | D s| ď Er|f | | D s. (10)
Proof. Asume that f is real value. Define A “ tx P X : Erf |D s ą 0u and B “ tx P X : Erf |D s ď 0u. Let
D P D the set of points where the inequality (10) fails. Let D` “ D X A and D´ “ D X B. Note also that
D “ D` Y D´, then

ż

D
|Erf | D s|dµ “ ż

D`
|Erf | D s|dµ ` ż

D´
|Erf | D s|dµ by D “ D` Y D´

“

ˇ

ˇ

ˇ

ˇ

ż

D`
Erf | D sdµˇˇˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

D´
Erf | D sdµˇˇˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

D`
fdµˇˇˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

D´
fdµˇˇˇ

ˇ

by definition of Conditional Expectation
ď

ż

D`
|f |dµ ` ż

D´
|f |dµ

“

ż

D`
Er|f | | D sdµ ` ż

D´
Er|f | | D sdµ

“

ż

D
Er|f | | D sdµ.

Since D is the set of points where the inequality (10) fails, we conclude that µpDq “ 0 as desired.
Proposition 9.6. Let pX, B , µq be a probability space, let D Ă B be a σ-algebra. The operator

Er . |D s : L1pX, B q Ñ L1pX, D q,
is continuous.
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Proof. The idea is to show that the norm of the operator is 1. Let f P L1pX, B q and by Lemma 9.5 we have
||Erf | D s|| “

ż

X
|Erf | D s|dµ ď ż

X
Er|f | | D sdµ “ ż

X
|f |dµ “ ||f ||.

Now if f P L2pX, B q one can use the Hilbert space structure to give a different characterization of the conditionalexpectation.
Theorem 9.7. Let pX, B , µq be a probability space, let D Ă B be a σ-algebra. Consider P : L2pX, B q Ñ
L2pX, D q be the orthogonal projection, then for every f P L2pX, B q we have Erf | D s “ Pf .

Proof. By definiton of orthogonal projection, for any function g P L2pX, D q we have xf ´Pf , gy “ 0. Therefore
ż

D
Pfdµ “ ż

X
1DPfdµ

“x1D, Pfy
“x1D, fy

“

ż

X
1Dfdµ

“

ż

D
fdµ,

and hence Pf “ Erf | D s as desired.
10 Herbert: Kac’s Lemma
Let M be the phase space of a physical system, for example let M include all possible states of molecules in abox. The σ-algebra B represents the collections of observable states of the system and µpAq is the probabilityof observing the state A. If f gives the discrete time evolution of the system, it is reasonable to expect that ifthe system is in equilibrium, f preserves the measure µ, that is, the probability of observing a certain state isindependent on time. Consider now an initial state in which all the particles are in half of the box (imagine ofhaving a wall which separates the box and then removing it). By Poincaré Recurrence Theorem, almost surely,all the molecules will return at some point in the same half of the box. This seems counter-intuitive. In reality,this is not a paradox, but simply the fact that the event will happen almost surely does not say anything aboutthe time it will take to happen again (the recurrence time). Indeed, one can show that if the transformation isergodic, the average recurrence time is inversely proportional to the measure of the set to which one wants toreturn.Let again f : M Ñ M be a measurable transformation.and µ a f-invariant finite measure. Let E Ă M be anymeasurable set with µpEq ą 0. Consider the first-return time function ρE : E Ñ NY t8u, defined by

ρEpxq “ mintn ě 1 : fnpxq P Eu
whenever the set in the right-hand side is non-empty, otherwise ρEpxq “ 8.Now we will show that this function ρE is integrable. To this end, we introduce

E0 “ tx P E : fnpxq R E for all n ě 1u
E˚0 “ tx P M : fnpxq R E for all n ě 0u.So, E0 is the set of points of E that never return to E, and E˚0 is the set of points of M that never enter in E.Note that µpE0q “ 0 by the Poincaré recurrence theorem.
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Theorem 10.1 (Kac). Let f : M Ñ M be a measurable transformation, µ a finite f -invariant measure and
E Ă M a subset of positive measure. Then, the function ρE is integrable and

ż

E
ρEdµ “ µpMq ´ µpE˚0 q

Proof. For each n ě 1 let us define
En “ tx P E : f pxq R E, ..., fn´1pxq R E but fnpxq P Eu
E˚n “ tx P M : x R E, ..., fn´1pxq R E but fnpxq P EuThis means that En is the set of points of E that return to E for the first time precisely at the moment n.

En “ tx P E : ρEpxq “ nu “ E X f´nEz
ď

1ďkďn´1Ek , ρ´1
E ptnuq “ En

and E˚n is the set of points that is not in E and enter in E for the first time at the moment n. These sets aremeasurable since E is measurable and so the function ρE is measurable.
Afirmation: for n ě 1 the sets En and E˚n are pairwise disjoint. In fact, let Ei and Ej with i ă j andcosnider Ei X Ej ‰ H. Take x P Ei then x P E, f kpxq R E for 1 ď k ď i ´ 1 and f ipxq P E. Observe that
f jpxq “ f j´ipf ipxqq P E, then f ipxq P Ej´i, this means that f ipxq P E, f lpxq R E for i ` 1 ď l ď j ´ 1. But
x P Ej and i ă j then f ipxq R E. Therefore the sets tEnu are pairwise disjoint. The proof that E˚j X E˚i “ Hand E˚j X Ei “ H are similarSo

µpMq “µ
˜«

ď

ně0En
ff

Y

«

ď

ně0E
˚
n

ff¸

“µ
˜

ď

ně0En
¸

` µ
˜

ď

ně0E
˚
n

¸

“

8
ÿ

n“0 µpEnq `
8
ÿ

n“0 µpE
˚
n q

“µpE˚0 q ` µpE0q ` 8
ÿ

n“1 µpEnq `
8
ÿ

n“1 µpE
˚
n q

“µpE˚0 q `
8
ÿ

n“1 µpEnq `
8
ÿ

n“1 µpE
˚
n q.

Then
µpMq ´ µpE˚0 q “

8
ÿ

n“1pµpEnq ` µpE˚n qq, (11)
But the measure is finite, then µpEmq, µpE˚mq Ñ 0 when mÑ8. Now observe that

f´1pE˚n q “ E˚n`1 Y En`1 for every n.
In fact, y P f´1pE˚n q then f pyq P E˚n this means that the first iterate of f pyq that belongs to E is fnpf pyqq “
fn`1pyq and that occurs if and only if y P E˚n or else y P En`1.So, given that µ is invariant, we have

µpE˚n q “ µpf´1pE˚n qq “ µpE˚n`1q ` µpEn`1q for every n.
Observe that

µpE˚n`1q “ µpE˚n`2q ` µpEn`2q
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then
µpE˚n q “ µpE˚n`2q ` µpEn`2q ` µpEn`1qNow,

µpE˚n`2q “ µpE˚n`3q ` µpEn`3qso,
µpE˚n q “ µpE˚n`3q ` µpEn`3q ` µpEn`2q ` µpEn`1q.Applying this relation successively, we find that
µpE˚n q “ µpE˚mq `

m
ÿ

i“n`1 µpEiq for every m ą n.

Taking the limit as mÑ8 we find that
µpE˚n q “

8
ÿ

i“n`1 µpEiq. (12)
Replace (12) in the equality (11). In this way we find that

µpMq ´ µpE˚0 q “
8
ÿ

n“1
˜

8
ÿ

i“n
µpEiq

¸

“

8
ÿ

n“1nµpEnq “
8
ÿ

n“1
ż

En
ρEdµ “ ż

E
ρEdµ.

Remark 10.2. When the system pf , µq is ergodic, the set E˚0 has zero measure. Then the conclusion of the Kactheorem means that 1
µpEq

ż

E
ρEdµ “ µpMq

µpEqfor every measurable set E with positive measure. The left-hand side of this expression is the mean return timeto E . The mean retunr time is inversely proportional to the measure of E
Remark 10.3. Consider µ probability measure on M, let E be as in the statement of Kac’s Lemma. One candefine, by restriction to E , an induced σ-algebra BE given by

BE “ tAX E : A P B u,

and an induced measure µE on pE, BEq given by restriction
µEpAq “

µpAX Eq
µpEq , for all A P B .

This define a probability measure (conditional measure) µE on E, so that µEpEq “ 1. Then Kac’s Lemma saysthat
ErρE | Es “

ż

E
ρEdµE “ 1

µpEq

ż

E
ρEdµ “ 1

µpEq .So
ErρE | Es “

1
µpEq

Thus, the average return time to E is 1{µpEq.
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11 Sarig L4, Application to Central Limit Theorem
Theorem 11.1 (Central Limit Theorem). Let pX, B , µ, T q be a mixing, probability preserving dynamical system.
Suppose pT : L Ñ L has a spectral gap on a Banach space L Ď L1pµq containing the constant functions, with
norm } ¨ } satisfying13

}fg} ď }f}}g}, & } ¨ } ě } ¨ }L1 .
Let ψ P L be bounded with

ş

ψdµ “ 0. If the cohomological14 equation ψ “ v ´ v ˝ T has no solution v P L,
then there is σ ą 0 such that 1

?
n

n´1
ÿ

k“0ψ ˝ T
k dist.
ÝÝÝÝÑ
nÑ`8

Np0, σ 2q;
in other words, for any interval ra, bs, we have

µ
#

x P X : 1
?
n

n´1
ÿ

k“0ψ ˝ T
kpxq P ra, bs

+

nÑ`8
ÝÝÝÝÑ

1
?2πσ 2

ż b

a
e´t2{σ 2dt.

Remark 11.2. 1. It seems that the mixing condition is unnecessary. Note T˚µ “ µ implies pT1 “ 1 andhence 1 is an eigenvalue of pT : L1 Ñ L1 with the one-dimensional space consisting of the constantfunctions tConstu Ď Ep1q contained in the eigenspace Ep1q corresponding to eigenvalue 1. Then, thespectral gap condition on pT : L Ñ L, where L Ě tConstu, implies that 1 is the dominant eigenvalue andit is simple. However, it is unclear whether or not the spectral gap property implies mixing?? Accordingto Exercise 1.5.4, the condition that 1 is the only eigenvalue on the unique circle and 1 is simple (notnecessarily spectral gap) only implies weak mixing.2. The Banach space L must contain the constant functions because the proof requires an operator pTtdefined on L and apply it to 1 P L.It also seems to make sense to require further that L be a Banach algebra (closed under multiplication);only then can we guarantee fg P L for any f , g P L, and for any ψ P L we have eitψ P L; any Banachalgebra must satisfy }fg} ď }f}}g}. Sarig himself says so too https://www.youtube.com/watch?v=
ApTbp8FtFJg.3. The observable ψ P L is assumed to be M Ñ R in order for the convergence in distribution to makesense.
ψ being real may also imply that pTt : f ÞÑ eitψf has norm }pTt} ď 1?? Not sure how to prove this though.

11.1 Some Probability Theory
Definition 11.3 (Distribution Function). Let X be an R-valued random variable. Its distribution function

FX : RÑ r0, 1sis defined as
FX ptq :“ PrX ă ts.

Definition 11.4 (Convergence in Distribution). Let Xn, n “ 1, 2, ¨ ¨ ¨ and Y be R-valued random variables, notnecessarily defined on the same probability space. We say the sequence Xn of random variables converges in
distribution to random variable Y , written Xn dist.

ÝÝÝÝÑ
nÑ`8

Y , if
FXnptq ” PrXn ă ts nÑ`8

ÝÝÝÝÑ PrY ă ts ” FY ptq at all continuity points t of FY ptq;in other words, the convergence holds for all t P R where FY ptq “ PrY ă ts is continuous.15
13For intance, the Lipschitz functions on r0, 1s with } ¨ }Lip norm.14For an explanation of the name “cohomological equation”, see https://amathew.wordpress.com/2010/07/17/

the-cohomological-equation-for-dynamical-systems/ and https://terrytao.wordpress.com/2008/12/21/
cohomology-for-dynamical-systems/.15We only require the convergence for continuity points to allow convergence in distribution of Xn “ 2 ´ 1

n to Y “ 2, where theconvergence FXn ptq Ñ FY ptq fails at t “ 2, a discontinuity point of FY ptq.
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Definition 11.5 (Characteristic Function). The characteristic function φX ptq of a R-valued random variable Xis defined as
φX ptq :“ EreitX s.

Theorem 11.6 (Lévy’s Continuity Theorem). A sequence of R-valued random variables Xn converges in distri-
bution to an R-valued random variable if and only if

φXnptq
nÑ`8
ÝÝÝÝÑ φY ptq, @t P R.

11.1.1 Berry-Esseen Smoothing InequalitySarig states an inequality, which he then proves in the Appendix, and then uses it to prove a special case ofLévy’s Continuity Theorem, where Y “ Np0, σ 2q. See Exercise 4.1. This special case suffices for proving ourCentral Limit Theorem.
11.2 Nagaev’s MethodWe now prove the Central Limit Theorem, following the functional-analytic Nagaev’s method. Write

ψn :“ ψ ` ψ ˝ T ` ¨ ¨ ¨ ` ψ ˝ T n´1.
By Lévy’s Continuity Theorem, it suffices to show convergence of characteristic functions, namely,

φ ψn?
n
ptq “ Erei

t?
nψns “

ż

X
ei

t?
nψndµ nÑ`8

ÝÝÝÝÑ e´ 12 σ 2t2 “ φNp0,σ 2qptq, @t P R. (13)
Define operators

pTtf :“ pT peitψf q,where t will be taken real for now, but later we will extend it to z P C to exploit Analytic Perturbation Theory.
Proposition 11.7 (Exercise 4.2). pTt

n
f “ pT npeitψn f q.

Proof. Base Case n “ 1 is clear. Now assume for n´ 1 and show for n.
pTt
n
f “pTtppTt

n´1
f q “ pT

´

eitψ pT n´1peitψn´1 f q
¯

“pT
´

pT reitψ˝T pT n´2peitψn´1 f qs
¯

, using Ex 1.2: pT rpf ˝ T qgs “ f ppTgq...
“pT nreitψ˝T n´1eitψn´1 f s “ pT nreitψn f s.

Note
ż

X
pTt
n
1dµ “ ż

X
pT npeitψnqdµ “ ż

X
eitψn1 ˝ T ndµ “ ż

X
eitψn “ Ereitψns “ φψnptq.

To prove (13), we need to study the behavior of φ ψn?
n
ptq “ Erei

t?
nψns “

ş

X
yT t?

n

n
1dµ as n Ñ `8 via analyticperturbation theory.

Claim: z ÞÑ pTz is an analytic family.Indeed, by continuity of pT , we obtain the expansion
pTzf “pT peizψf q “ pT

˜

8
ÿ

n“0
pizψqn
n! f

¸

“ pT f `
8
ÿ

n“1
pizqn
n! pTMn

ψf , where Mψ : f ÞÑ ψf .
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Since }Mψf} “ }ψf} ď }ψ}}f}, it follows that Mψ is a bounded linear operator with }Mψ} ď }ψ}, and hence
}pTMn

ψ} ď }
pT }}ψ}n.

This implies the series ř8

n“1 pizqnn! pTMn
ψ converges in } ¨ } norm on C, and hence pTz is analytic on C, accordingto Ex 3.4.

Proposition 11.8.

pTz
1
“i pTzMψ ;

pTz
2
“´ pTzM2

ψ ;
p pTz

n
q1 “i pTz

n
Mψn ;

p pTz
n
q2 “´ pTz

n
M2
ψn .

Proof. It follows directly from the expansion pTz “ pT `
ř8

n“1 pizqnn! pTMn
ψ that

pTz
1
“

8
ÿ

n“1
npizqn´1i

n! pTMn
ψ “ i

˜

8
ÿ

n“1
pizqn´1
pn´ 1q! pTMn´1

ψ

¸

Mψ “ i
˜

8
ÿ

n“0
pizqn
n! pTMn

ψ

¸

Mψ “ i pTzMψ .

The second derivative pTz
2 is calculated the same way. For p pTznq1, note

p pTz
n
q1 “

´

pT npeizψnq
¯1

“ pT nppeizψnq1q “ pT npeizψn iMψnq “ ipT npeizψnMψnq “ i pTz
n
Mψn .

The second derivative p pTznq2 is again calculated the same way.
11.3 First Derivative λ1z at z “ 0
By assumption of the Central Limit Theorem, pT0 “ pT “ λ0P0 ` N0 has a spectral gap with λ0 “ 1 and
P0f “ ş

fdµ, according to Ex 2.3 and Ex 3.8.By Analytic Perturbation Theorem, there is an ε ą 0 such that for any |z| ă ε , the analytically perturbedoperator pTz also has a spectral gap:
pTz “ λzPz `Nz ,where P2

z “ Pz , dimImpPzq “ 1, NzPz “ PzNz “ 0, and
ρpNzq ă |λz | ´ κ, for some uniform κ ą 0.

Differentiating equation pTzPz “ λzPz yields
pTz
1
Pz ` pTzP 1z “ λ1zPz ` λzP 1z .Left multiplying by Pz yields

Pz pTz
1
Pz ` Pz pTzP 1z “Pzλ1zPz ` PzλzP 1z

Pz pTz
1
Pz ` λzPzP 1z “λ1zPz ` λzPzP 1z using Pz pTz “ λzPz and P2

z “ Pz

Pz pTz
1
Pz “λ1zPz .Plugging in z “ 0 and applying to 1, we have

λ10 “ λ10P01 “ P0 pT01P01 “ P0pi pT0Mψ1q “ iP0p pT0ψq “ i
ż

X
pTψdµ “ i

ż

X
ψdµ “ 0.
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11.4 Second Derivative λ2z at z “ 0
Claim: λ2p0q “ ´ lim

nÑ`8
1
n
ş

X pψnq
2dµ.

Indeed, first we differentiate equation pTz
n
Pz “ λnzPz to obtain

p pTz
n
q1Pz ` pTz

n
pPzq1 “ pλnz q1Pz ` λnz pPzq1.Differentiating again yields

p pTz
n
q2Pz ` 2p pTznq1pPzq1 ` pTz

n
pPzq2 “ pλnz q2Pz ` 2pλnz q1pPzq1 ` λnz pPzq2.Left multiplying by Pz yields

Pzp pTz
n
q2Pz ` 2Pzp pTznq1pPzq1 ` Pz pTz

n
pPzq2 “Pzpλnz q2Pz ` 2pλnz q1PzpPzq1 ` λnzPzpPzq2

Pzp pTz
n
q2Pz ` 2Pzp pTznq1pPzq1 ` λnzPzpPzq2 “Pzpλnz q2Pz ` 2pλnz q1PzpPzq1 ` λnzPzpPzq2 using Pz pTzn “ λnzPz

Pzp pTz
n
q2Pz ` 2Pzp pTznq1pPzq1 “Pzpλnz q2Pz ` 2pλnz q1PzpPzq1.Evaluating at z “ 0 yields

P0p pT0nq2P0 ` 2P0p pT0nq1pP0q1 “P0pλn0q2P0 ` 2pλn0q1P0pP0q1
P0p´ pT0nM2

ψnqP0 ` 2P0pi pT0nMψnqpP0q1 “P0pλn0q2P0 ` 2pλn0q1P0pP0q1.
Note

pλnz q1 “nλn´1
z λ1z

pλnz q2 “npλn´1
z q1λ1z ` nλn´1

z λ2z ,and by evaluating at z “ 0, we have
pλn0q1 “nλn´10 λ10 “ nλ10 “ 0
pλn0q2 “npλn´10 q1λ10 ` nλn´10 λ20 “ nλ20 .Plugging these into the previous equation, we continue

P0p´ pT0nM2
ψnqP0 ` 2P0pi pT0nMψnqpP0q1 “nλ20P0.

Applying to 1, we have
nλ20P01 “P0p´ pT0nM2

ψnqP01` 2P0pi pT0nMψnqpP0q11
λ20 “ 1

n

´

´P0 pT0npψnq2 ` 2iP0 pT0nψnpP0q11¯

“´
1
n

ż

X
pT nrpψnq2sdµ ` 2i 1n

ż

X
pT nrψnpP0q11sdµ

“´
1
n

ż

X
pψnq2dµ ` 2i 1n

ż

X
ψnpP0q11dµ

“´
1
n

ż

X
pψnq2dµ ` 2i ż

X
ppP0q11q 1n n´1

ÿ

k“0ψ ˝ T
kdµ.

By Birkhoff Ergodic Theorem,
1
n

n´1
ÿ

k“0ψ ˝ T
k nÑ`8
ÝÝÝÝÑ

ż

X
ψdµ “ 0, µ-a.e.
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Since | 1n řn´1
k“0 ψ ˝ T k | ď |ψ|, it follows from Dominated Convergence Theorem that

λ20 “´ lim
nÑ`8

1
n

ż

X
pψnq2dµ ` 2i lim

nÑ`8

ż

X
ppP0q11q 1n n´1

ÿ

k“0ψ ˝ T
kdµ

“´ lim
nÑ`8

1
n

ż

X
pψnq2dµ ` 2i ż

X
ppP0q11q lim

nÑ`8

1
n

n´1
ÿ

k“0ψ ˝ T
kdµ

“´ lim
nÑ`8

1
n

ż

X
pψnq2dµ,

as claimed.We now know the Taylor coefficients up to order 2:
λz “ 1´ 12σ 2z2 ` Opz3q, σ :“d lim

nÑ`8

1
n

ż

X
pψnq2dµ.

Proposition 11.9 (Green-Kubo Formula, Ex 4.4).
σ 2 “ ż

X
ψ2dµ ` 2 8

ÿ

n“1
ż

X
ψpψ ˝ T nqdµ.

Proof. By definition of σ , we have
σ 2 “ lim

nÑ`8

1
n

ż

X
pψnq2dµ

“ lim
nÑ`8

1
n

n´1
ÿ

k“0
n´1
ÿ

l“0
ż

X
pψ ˝ T kqpψ ˝ T lqdµ

Note for d “ |k ´ l|, by invariance µ ˝ T´1 “ µ, we have
ż

X
pψ ˝ T kqpψ ˝ T lqdµ “ ż

X
ψpψ ˝ T dqdµ.

This implies
σ 2 “ lim

nÑ`8

1
n

˜

n
ż

X
ψ2dµ ` n´1

ÿ

d“1 2pn´ dq
ż

X
ψpψ ˝ T dqdµ¸

“

ż

X
ψ2dµ ` lim

nÑ`8

n´1
ÿ

d“1 2n´ d
n

ż

X
ψpψ ˝ T dqdµ

“

ż

X
ψ2dµ ` 8

ÿ

d“1 2 ż
X
ψpψ ˝ T dqdµ,

as desired.
11.5 Limit of Characteristic Functions φ ψn?

n
ptq

Fix t P R. By previous analytic perturbation arguments, for n so large that t?
n ă ε , we have

φ ψn?
n
ptq “Erei

t?
nψns “

ż

X
yT t?

n

n
1dµ “ ż

X

´

λnt?
n
P t?

n
1`Nn

t?
n
1

¯ dµ
“λnt?

n

ˆ1` ż

X
pP t?

n
´ P0q1dµ ` λ´nt?

n

ż

X
Nn

t?
n
1dµ˙

“λnt?
n

ˆ1` Op}P t?
n
´ P0}q ` Op|λ´nt?

n
|}Nn

t?
n
}q

˙ using } ¨ } ě } ¨ }L1

81



By continuity of z ÞÑ Pz , we have }P t?
n
´ P0} nÑ`8

ÝÝÝÝÑ 0. Since lim
nÑ`8

}Nn
z }

1{n “ ρpNzq ď |λz | ´ κ , it followsthat
|λ´nt?

n
|}Nn

t?
n
} ď

›

›

›

›

Nn
t?
n

›

›

›

›

ˇ

ˇ

ˇ
λ t?

n

ˇ

ˇ

ˇ

n
nÑ`8
ÝÝÝÝÑ 0.

With spectral gap, the long term behavior of pT n1 is always dominated by the dominant eigenvalue. If werelax the hypothesis to quasi-compactness, then maybe we can recover a version of the Analytic PerturbationTheorem, and need to adjust the dominating behavior accordingly by summing over the multiplicities??? cf.GouëzelWe continue
φ ψn?

n
ptq “λnt?

n
p1` op1qq

“

„1´ 12σ 2p t
?
n q

2 ` Oppt{
?
nq3qn p1` op1qq

“

„1´ σ 2t22 n´1 ` Opn´3{2qn p1` op1qq.
The scaling by 1?

n is crucial to being able to see the limiting behavior.By L’Hôpital’s Rule, we have
lim

nÑ`8
log „1´ σ 2t22 n´1 ` Opn´3{2qn “ lim

nÑ`8
n log „1´ σ 2t22 n´1 ` Opn´3{2q

“ lim
nÑ`8

log ”1´ σ 2t22 n´1 ` Opn´3{2qı
n´1 “ lim

nÑ`8

σ2 t22 n´2`Opn´5{2q1´ σ2 t22 n´1`Opn´3{2q
´n´2

“´ lim
nÑ`8

σ 2t22 ` Opn´1{2q1´ σ 2t22 n´1 ` Opn´3{2q “ ´
σ 2t22 .

This shows
„1´ σ 2t22 n´1 ` Opn´3{2qn nÑ`8

ÝÝÝÝÑ e´ σ2 t22 ,

and hence
φ ψn?

n
ptq “ lim

nÑ`8

„1´ σ 2t22 n´1 ` Opn´3{2qn p1` op1qq “ e´ σ2 t22 “ φNp0,σ 2qptq, @t P R.

11.6 Positivity of σIt remains to show σ ą 0. This will come from the non-solvability of the cohomological equation
ψ “ v ´ v ˝ T . (14)

For a contradiction, suppose σ “ 0. We will then construct a solution v P L to the cohomological equation(14). Take
u :“ ψ `

8
ÿ

n“1 pT
nψ,

where the sum converges in } ¨ } norm because P0ψ “ ş

ψdµ “ 0 and so
}pT nψ} “ }Nn0ψ} ď }Nn0 }}ψ} exp.fast

ÝÝÝÝÑ
nÑ`8

0, using lim
nÑ`8

}Nn0 }1{n “ ρpN0q ă λ0 “ 1.
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By construction, we have
ψ “ u´ pTu, & pTu “

8
ÿ

n“1 pT
nψ

From Green-Kubo Formula, we derive
0 “σ 2 “ ż

X
ψ2dµ ` 2 8

ÿ

n“1
ż

X
ψpψ ˝ T nqdµ “ ż

X
ψ2dµ ` 2 8

ÿ

n“1
ż

X
ppT nψqψdµ

“

ż

X
ψ2dµ ` 2 ż

X
ψ
8
ÿ

n“1 pT
nψdµ by Bounded Convergence using } ¨ } ě } ¨ }L1

“

ż

X
pu´ pTuq2dµ ` 2 ż

X
pu´ pTuqpTudµ “ ż

X
pu´ pTuqpu´ pTu` 2pTuqdµ

“

ż

X
pu´ pTuqpu` pTuqdµ “ ż

X
u2 ´ ppTuq2dµ “ ż

X
u2dµ ´ ż

X
ppTuq2dµ

“

ż

X
pT pu2qdµ ´ ż

X
ppTuq2dµ using ż

pTgdµ “ ż

gdµ
“

ż

X
pT pu2q ˝ Tdµ ´ ż

X
pppTuq ˝ T q2dµ using invariance ż

gdµ “ ż

g ˝ Tdµ
“

ż

X
Eru2|T´1B s ´ Eru|T´1B s2dµ by ex 1.2 ppTgq ˝ T “ Erg|T´1B s.

Jensen’s Inequality for Conditional Probabilities implies
Eru2|T´1B s ě Eru|T´1B s2.

Together with the above equality, we conclude
Eru2|T´1B s “ Eru|T´1B s2.

But this equality holds only when u is T´1B -measurable and hence
u “ Eru|T´1B s “ ppTuq ˝ T ,

by ex 1.2. Putting v :“ ´pTu, we have
ψ “ u´ pTu “ ppTuq ˝ T ´ pTu “ ´v ˝ T ` v,

contradicting the non-solvability of the cohomological equation in L. This shows σ ą 0 and completes theproof of the Central Limit Theorem.
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12 Gabriel – Sarig A3 Mixing and exactness for the Gauss map
Theorem 12.1 ((Martingale Convergence Theorem I), Bogachev Example 10.3.14.). Suppose pX, B , µq is a
probability space, and pFnqně1 is an increasing sequence of sub-σ-algebras in B . Define F :“ σp

Ť

ně1 Fnq

(the smallest σ-algebra containing the union). If f P L1pµq, then Epf |Fnq ÝÑ Epf |Fq a.e. and in L1.
Theorem 12.2 ((Martingale Convergence Theorem II), Bogachev Corollary 10.3.17.). Suppose pX, B , µq is a
probability space, and pFnqnď0 is a sequence of sub-σ-algebras in B such that Fn´1 Ă Fn for all n. Define
F :“ Ş

nď0 Fn (the intersection of σ-algebras is also a σ-algebra). If f P L1pµq, then Epf |Fnq ÝÑ Epf |Fq a.e.
and in L1.Let pX, B , µ, T q be a probability preserving space.
Definition 12.3. We say that µ is mixing if, for every A, B P B :

µpAX T´npBqq ÝÑ µpAqµpBq.

Definition 12.4. If T is a (not-invertible) non-singular map, we say that µ is exact if µpEq P t0, 1u for every
E P

Ş

nPN T´nB .
Remark 12.5. T´nB “ tT´npBq; B P B u.
Proposition 12.6. If µ is exact, then it is mixing.

Proof. By measurability of T , it follows that pT´nB qnPN is a decreasing sequence of σ-algebras. By theMartingale Convergence Theorem II, for all A P B :
Ep1A|T´nB q

L1
ÝÑ E

˜

1A

ˇ

ˇ

ˇ

č

nPN
T´nB

¸

“ Ep1A|tH, Xuq “ µpAq.

So for all A, B P B :
µpAX T´npBqq “

ż

1Ap1B ˝ T nqdµ “ ż

Ep1A|T´nB q1B ˝ T ndµ
“

ż

µpAq1B ˝ T ndµ ` O
ˆ
ż

ˇ

ˇ

ˇ
Ep1A|T´nB q ´ µpAq

ˇ

ˇ

ˇ
dµ˙ ÝÑ µpAqµpBq.
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Definition 12.7. The Gauss map T : r0, 1s Ñ r0, 1s is defined as follows:
T pxq :“

$

’

’

&

’

’

%

0, x “ 0;1
x mod 1, x ‰ 0.

Remark 12.8. Notice that 1
x mod 1 is the fractional part of 1

x , i.e., 1
x mod 1 “ 1

x ´t 1
x u. Sarig denotes 1

x mod 1by  1
x
(.

We will consider, on the space r0, 1s, the Borel σ-algebra B , and denote by m the Lesbesgue measure.
Proposition 12.9. The Gauss map has the following invariant probability measure:

dµ “ 1ln 2 ¨ 11` x dx.

This means that, for every B P B :
µpBq “ 1ln 2

ż

B

11` x dx.

This measure is called Gauss measure. Moreover, Gauss and Lebesgue measures are absolutely continuous
with respect to each other (i.e. they are equivalent).

Proof. Let ra, bs P B be an interval, and notice that:
T´1pra, bsq “ 8

ď

n“1
„ 1
b` n,

1
a` n



.
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This union is disjoint, so:
µpT´1pra, bsqq “

1ln 2 8
ÿ

n“1
ż 1

a`n

1
b`n

11` x dx
“

1ln 2 8
ÿ

n“1
„lnˆ1` 1

a` n

˙

´ lnˆ1` 1
b` n

˙

“
1ln 2 8

ÿ

n“1 rlnpa` n` 1q ´ lnpa` nq ´ lnpb` n` 1q ` lnpb` nqs

“
1ln 2 lim

NÑ8

N
ÿ

n“1 rlnpa` n` 1q ´ lnpa` nq ´ lnpb` n` 1q ` lnpb` nqs

“
1ln 2 lim

NÑ8
rlnpa`N ` 1q ´ lnpa` 1q ´ lnpb`N ` 1q ` lnpb` 1qs

“
1ln 2

„lnpb` 1q ´ lnpa` 1q ` lim
NÑ8

lnˆa`N ` 1
b`N ` 1

˙

“
1ln 2 rlnpb` 1q ´ lnpa` 1qs

“
1ln 2

ż b

a

11` x dx “ µpra, bsq.

This proves the invariance. To show that Gauss and Lebesgue measures are absolutely continuous with respectto each other, we will prove the following inequalities for every B P B :12 ln 2mpBq ď µpBq ď 1ln 2mpBq.In fact, for every x P B, we have 12 ď 11`x ď 1. Then:
12 ln 2mpBq “ 1ln 2

ż

B

12dx ď 1ln 2
ż

B

11` x dx “ µpBq ď 1ln 2
ż

B
1dx “ 1ln 2mpBq.

Remark 12.10. If x P p0, 1q, then x has a continued fraction expansion of the form:
x “ 1

x1 ` 1
x2 ` 1

x3 ` ¨ ¨ ¨
,

where each xj belongs to N. Moreover, it can be shown that x is irrational if and only if it has infinite continuedfraction expansion; and, in this case, the continued fraction expansion is unique. Observe that:1
x “ x1 ` 1

x2 ` 1
x3 ` ¨ ¨ ¨

.

Hence, T pxq acts like a shift map, deleting the first term in the continued fraction expansion of x :
T pxq “ 1

x2 ` 1
x3 ` 1

x4 ` ¨ ¨ ¨
.
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Lemma 12.11 (Exercise 2.5). For each a P N, define

vapxq :“ 1
a` x , x P r0, 1s,

and their compositions
va1,¨¨¨ ,an :“ van ˝ ¨ ¨ ¨ ˝ va1 .

a. For any f P L1,
pT nf “

8
ÿ

a1,¨¨¨ ,an“1 |v
1
a1,¨¨¨ ,an |f ˝ va1,¨¨¨ ,an .

b. There are constants C ą 0 and θ P p0, 1q such that for any string a :“ pa1, . . . , anq of any length n ě 1,
we have

|vapxq ´ vapyq| ă Cθn|x ´ y|.

c. There is a constant H ą 1 such that for any x, y P r0, 1s and any string a :“ pa1, . . . , anq of any length
n ě 1, we have

ˇ

ˇ

ˇ

ˇ

v 1apxq
v 1apyq

´ 1ˇˇˇ
ˇ

ď H|x ´ y|.

d. There is another constant G ą 1 such that for any x P r0, 1s and any string a :“ pa1, . . . , anq of any length
n ě 1, we have

G´1mpvar0, 1qq ď |v 1apxq| ď Gmpvar0, 1qq.
e. var0, 1q are non-overlapping sub-intervals of r0, 1q.
Theorem 12.12 (Rényi). The Gauss map is exact with respect to Gauss measure.

Proof. By the equivalence of Lebesgue and Gauss map, it is enough to show that T is “exact” with respect toLebesgue measure m. For each a P N, let νa : r0, 1s Ñ r0, 1s denote the inverse branches νapxq :“ 1
a`x , andset, for every a “ pa1, . . . , anq, va :“ va1 ˝ ¨ ¨ ¨ ˝ van . Define ras :“ νapr0, 1sq. This is the set of all numberswhose continued fraction expansion starts with a.

Rényi’s inequality: there exists C ą 1 such that:1
C ¨mrasmrbs ď mra, bs ď C ¨mrasmrbs @a, b.

Here, ra, bs denotes the set of all numbers whose continued fraction expansion stars with a followed by b. Wewill also denote by |a| the length of a.
Proof of Rényi’s inequality.

mra, bs “

ż

1ras1rbs ˝ T |a|dm “
ż

rbs
pT |a|1rasdm

“

ż

rbs
|ν1a|dm pby Exercise 2.5 a, because a ‰ bñ 1ras ˝ νb “ 0 by Exercise 2.5 eq

“

ż

rbs
G˘1mrasdm “ G˘1mrasmrbs pby Exercise 2.5 dq.

Here a “ G˘1b means G´1 ď a{b ď G. Choosing C “ G, we have then proved that:1
C ¨mrasmrbs ď mra, bs ď C ¨mrasmrbs.

Define, for each n P N, Fn :“ σ ptras; |a| “ nuq. Then B “ σ p
Ť

nPN Fnq. Standard approximation arguments
show that, for every a and B P B :1

C ¨mrasmpBq ď mpaX T´|a|pBqq ď C ¨mrasmpBq.
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We can now show exactness. Suppose B P
Ş

nPN T´nB and mpBq ą 0. For every n P N, there exists Bn P B
such that B “ T´npBnq. Then, for every a with |a| “ n:

mpB X rasq “ mpT´npBnq X rasq ě
1
C mpBnqmras. (15)

Remember that 12 ln 2 ď dµ
dm ď

1ln 2 , where µ is the Gauss measure. So:

mpBnq ě ln 2µpBnq “ ln 2µpBq ě 12µpBq.
Then, by (15) it follows that, for all a:

mpB X rasq
mras ě

mpBq2C .

Moreover, we know that, for each n P N, Fn “ σ ptras; |a| “ nuq. Hence (exercise):

Emp1B|Fnq “
ÿ

|a|“n

mpB X rasq
mras 1ras.

Therefore, Emp1B|Fnq ě
mpBq2C ą 0. But B “ σ p

Ť

nPN Fnq, so by the Martingale Convergence Theorem I:

lim
nÑ8

Emp1B|Fnq “ Ep1B|B q.

Therefore 1B ą 0 a.e., which implies mpBq “ 1.
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13 Future Exercises
1. Sarig Exercise 2.3.Zheng has discussed a little of this in the 4th meeting on 27 Jan 2021, see Proposition 3.13. The stickingpoints are: (i) is the action of projection Pf “ h

ş

fdµ uniquely determined? if so, prove it. if not,provide an example of an alternative action. (ii) is the assumption } ¨ }L ě } ¨ }L1 really necessary for thisproposition?2. Exercise for Hennion’s Theorem. Show that it suffices to prove the case k “ 1.3. equivalence of weak and strong analyticity. Sargig A44. Separation of Spectrum Theorem. Sarig A55. Kato Lemma. Sarig A6
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A Lebesgue-Radon-Nikodym Theorem; a Special Case
In this subsection, we prove a special case of the Lebesgue-Radon-Nikodym Theorem, [Rud87] Theorem 6.10.We follow an elegant proof due to Rudin based on Riesz Representation Theorem.
Theorem A.1 (Riesz Representation; [Rud87] Theorem 4.12). If L is a continuous linear function on Hilbert
space H, then there is a unique y P H such that

Lx “ xx, yy @x P H.

Another important ingredient in Rudin’s proof is the fact that L2 is a Hilbert space.
Theorem A.2 (L2 is Hilbert). Let pX,F, µq be any measure space, and let L2pµq denote the space of measurable
functions f : X Ñ C for which

ż

|f |2dµ ă `8,
where two functions are identified when they coincide µ-a.e. By Cauchy-Schwarz Inequality, x¨, ¨y given by

xf , gy :“ ż

X
f pxqgpxqdµx

defines an inner product on L2pµq. Moreover, pL2pµq, x¨, ¨yq is complete and hence a Hilbert space.Next, we state and prove a special case of the Lebesgue-Radon-Nikodym Theorem.
Theorem A.3 (Lebesgue-Radon-Nikodym Theorem; Special Case). Let µ, λ be two real positive finite measures
on measurable space pX,Fq.

(a) There is then a unique pair of real finite measures λa and λs on pX,Fq such that

λ “ λa ` λs, λa ! µ, λs K µ

Moreover, λa and λs are finite.

(b) There is a unique h P L1pµq such that

λapEq “
ż

E
hdµ, @E P F.

Proof. First we show the uniqueness of the decomposition
λ “ λa ` λs, λa ! µ, λs K µ.If λ “ λ1a ` λ1s is another such decomposition, then
µ " λa ´ λ1a “ λ1s ´ λs K µ.This implies λa ´ λ1a “ λ1s ´ λs is the zero measure, and hence the decomposition is unique.For existence, note

φ :“ λ` µis another real positive finite measure on pX,Fq. Define
Λ : L2pφq Ñ R, f ÞÑ

ż

fdλ.
Since the integral is linear, so is Λ. Also, Λ is bounded:

|Λpf q| “ ˇ

ˇ

ˇ

ˇ

ż

fdλˇˇˇ
ˇ

ď

ż

|f |dλ ď ż

|f | ¨ 1
ď

ˆ
ż

|f |2dφ˙1{2 ˆż 12dφ˙1{2 by Schwarz Inequality
“}f}2pφpX qq1{2.
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Hence, Λ has a unique Riesz representation by some g P L2pφq:
ż

fdλ “ ż

fgdφ, @f P L2pφq. (16)
Part I. We show gpxq P r0, 1s for φ-a.e. x P X . Taking f “ 1E with E any measurable set in X , we have

0 ď λpEq “
ż

1Edλ “ ż

1Egdφ ď φpEq.

This implies that 0 ď 1
φpEq

ż

E
gdφ ď 1, (17)

whenever φpEq ą 0.For a contradiction, suppose there is some interval rα ´ ε, α ` εs such that rα ´ ε, α ` εs X r0, 1s “ H and
φpg´1rα ´ ε, α ` εsq ą 0. Then, denoting E “ g´1rα ´ ε, α ` εs, we have

ˇ

ˇ

ˇ

ˇ

1
φpEq

ż

E
gdφ ´ α

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1
φpEq

ż

E
pg´ αqdφˇˇˇ

ˇ

ď
1

φpEqεφpEq “ ε,

contradicting bounds (17). We conclude any interval rα ´ ε, α ` εs disjoint from r0, 1s must have φpg´1rα ´
ε, α ` εsq “ 0.For every α P Qzr0, 1s, there is some εα ą 0 for which rα ´ εα , α ` εα s is disjoint from r0, 1s, so

φpg´1rα ´ εα , α ` εα sq “ 0, @α P Qzr0, 1s.
This implies

φpg´1pRzr0, 1sqq “ φ

¨

˝g´1
¨

˝

ď

αPQzr0,1srα ´ εα , α ` εα s

˛

‚

˛

‚“ 0,
that is to say, gpxq P r0, 1s for φ-a.e. x P X . Up to redefining g outside this full-φ-measure set, we mayassume gpxq P r0, 1s for all x P X .
Part II. Define sets

A :“ tx P X : gpxq ă 1u, B :“ tx P X : gpxq “ 1u,and real positive finite measures
λapEq “ λpE X Aq, λspEq “ λpE X Bq.

Then clearly AY B “ X and thus we have decomposition
λ “ λa ` λs.Rewrite the relation (16) into ş

fdλ “ ş

fgdλ` ş

fgdµ
ż

f p1´ gqdλ “ ż

fgdµ, @f P L2pφq. (18)
Take f “ 1B , and by (18) and definition of B, we see

0 “ ż

B
p1´ gqdλ “ ż

B
gdµ “ µpBq.

This implies λs K µ.
Part III. We show existence part of statement (b), which will imply λa ! µ. (Alternatively, one may show λa ! µdirectly.) Take any measurable set E Ď X and define for each n P N

fnpxq :“ r1` gpxq ` ¨ ¨ ¨ ` pgpxqqns1E .
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Note each fn is bounded and hence L2pφq. By relation (18) applied to fn and the identity
p1´ xqp1` x ` ¨ ¨ ¨ ` xnq “ 1´ xn`1,

we obtain
ż

E
p1´ pgpxqqn`1qdλpxq “ ż

fnp1´ gqdλ “ ż

fngdµ “ ż

E
r1` gpxq ` ¨ ¨ ¨ ` pgpxqqnsgpxqdµpxq.

Since g ” 1 on B and µpBq “ 0, we have
ż

EXA
p1´ pgpxqqn`1qdλpxq “ ż

EXA
r1` gpxq ` ¨ ¨ ¨ ` pgpxqqnsgpxqdµpxq.

For any x P E X A, we have gpxq P r0, 1q and hence lim
nÑ`8

pgpxqqn`1 “ 0. By Monotone Convergence,
λapEq “ λpE X Aq “

ż

EXA
1dλ “ lim

nÑ`8

ż

EXA
p1´ pgpxqqn`1qdλpxq.

On the other hand, for any x P E X A, we have gpxq P r0, 1q, and hence
r1` gpxq ` ¨ ¨ ¨ ` pgpxqqnsgpxq ď gpxq1´ gpxq ă `8.

Monotone Convergence thus yields
λapEq “ lim

nÑ`8

ż

EXA
r1` gpxq ` ¨ ¨ ¨ ` pgpxqqnsgpxqdµpxq “ ż

EXA
hpxqdµpxq “ ż

E
hpxqdµpxq,

where h : X Ñ R (note h P L1pµq) is given by
hpxq “

# lim
nÑ`8

r1` gpxq ` ¨ ¨ ¨ ` pgpxqqnsgpxq x P A0 x P B
.

Part IV. It remains to show uniqueness part of statement (b). Suppose h1 P L1pµq also satisfies
λapEq “

ż

E
h1dµ, @E P F.

Note D :“ tx P X : hpxq ą h1pxqu is measurable. For a contradiction, suppose µpDq ą 0. Then,
0 “ λapDq ´ λapDq “

ż

D
hdµ ´ ż

D
h1dµ “ ż

D
ph´ h1qdµ ą 0,

a contradiction. Hence, h P L1pµq is unique. The proof is complete.
Try to generalize to ν ! µ, where ν is finite but µ is σ-finite. Maybe even further to signed or complexmeasures???
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B Hahn-Banach Theorem and Consequences
Definition B.1 (Closed Linear Subspace). A subset E of a linear space V over R is called a linear subspace if

λ1f1 ` λ2f2 P E, @λ1, λ2 P R,@f1, f2 P E.A subset E of a normed linear space V is called closed if
lim

nÑ`8
fn P E, @tfnu Ď E strongly convergent in V .

Definition B.2 (Sublinear Functional). On a vector space X , a sublinear functional is a function q : X Ñ Rsuch that(a) qpx ` yq ď qpxq ` qpyq for all x, y P X ;(b) qpaxq “ aqpxq for all x P X and a P Rě0.Note any norm is a sublinear functional. In fact, (a) is the Triangle Inequality, and (b) is Homogeneity fornonnegative scalars. So a sublinear functional q falls short of being a norm in that q can take negative values,need not satisfy Absolute Homogeneity (}ax} “ |a|}x} for any a P R and x P X ) for negative scalars, and neednot separate points (}x} “ 0 if and only if x “ 0).
Theorem B.3 (Hahn-Banach Theorem for Vector Spaces over R; [Con85] Theorem 6.2). Let X be a vector space
over R and q a sublinear functional on X . If M is a linear subspace of X and f : M Ñ R is a linear functional
with f pxq ď qpxq for all x P M, then there is a linear functional F : X Ñ R such that F |M “ f and F pxq ď qpxq
for all x P X.The substance of the theorem is not that the extension from M to X exists, but that there is an extension thatremains dominated by sublinear functional q. The proof relies on Zorn’s Lemma16.
Proof. Take x1 P XzM and define M1 :“ spantx1,Mu. In order to extend f to M1, we need to find an appropriatevalue α1 P R for

f px1q “ α1.Then, by linearity, we will have f ptx1 ` yq “ tf px1q ` f pyq “ tα1 ` f pyq for all tx1 ` y P spantx1,Mu.The restriction is domination by q. Finding such an appropriate α1 reduces to meeting the following twoconditions.(i) for t ą 0, we need f ptx1 ` yq ď qptx1 ` yq “ tqpx1 ` t´1yq for all y P M , or equivalently,
t´1f ptx1 ` yq “ α1 ` f pt´1yq ď qpx1 ` t´1yq, @y P M.

In other words, we need
α1 ď qpx1 ` y1q ´ f py1q, @y1 P M.

(ii) for t ă 0, the condition f ptx1 ` yq ď qptx1 ` yq “ p´tqqp´x1 ` p´tq´1yq for all y P M is equivalent to
p´tq´1f ptx1 ` yq “ ´α1 ` f pp´tq´1yq ď qp´x1 ` p´tq´1yq, @y P M.

In other words, we need
α1 ě f py2q ´ qp´x1 ` y2q, @y2 P M.

Note that for any y1, y2 P M , we have
f py1q ` f py2q “ f py1 ` y2q ď qpy1 ` y2q ď qpx1 ` y1q ` qp´x1 ` y2q.

That is,
f py2q ´ qp´x1 ` y2q ď qpx1 ` y1q ´ f py1q, @y1, y2 P M.

16Zorn’s Lemma: If every nonempty chain in a nonempty partially ordered set P has an upper bound in P , then P has at least onemaximal element.
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Therefore, there exists an α1 P R satisfying conditions (i) and (ii), and we have extended f to M1.The proof is completed by Zorn’s Lemma. Define the set P to be the collection of all linear subspaces N with
M Ď N Ď X for which there exists a linear functional g : N Ñ R with g|N “ f and gpxq ď qpxq for all x P N .Note P Q M is nonempty. Partially order P by inclusion Ď. Then, any nonempty chain tNcucPC Ď P has anupper bound N “ Ť

cPC Nc P P . Zorn’s Lemma yields a maximal element N0 P P .We show N0 “ X . Suppose not. Then, there is some x2 P XzN0 so that N1 :“ spantx2, N0u is a strictly largerlinear subspace than N0. Since we can extend g from N0 to N1 as we did from M to M1, it follows that N0 isnot a maximal element of P , a contradiction. We conclude N0 “ X and complete the proof.
An easy application of Hahn-Banach allows us to extend a bounded linear functional defined on a linearsubspace to the entire space, while preserving the operator norm.
Corollary B.4. Let pX, } ¨ }q be a normed linear space over R, M a linear subspace, and f : M Ñ R a bounded
linear functional. Then, there exists F P X 1 such that F |M “ f and }F} “ }f}.

Proof. Define q : X Ñ R by
qpxq :“ }f}}x}, @x P R.Then, q is a sublinear functional on X with f pxq ď qpxq for all x P M . Hahn-Banach Theorem extends f toa linear functional F : X Ñ R such that F |M “ f and F pxq ď qpxq “ }f}}x} for all x P X . This implies

}F} ď }f}. On the other hand, }F} ě }F |M} “ }f}. So we conclude }F} “ }f}.
This type of norm-preserving extension of bounded linear functionals allows us to explore a certain symmetryin the norms of X and its dual X 1.
Corollary B.5. If X is a normed linear space and x P X, then

}x} “ supt|f pxq| : f P X 1, }f} ď 1u.
Moreover, this supremum is attained.

Proof. Let α “ supt|f pxq| : f P X 1, }f} ď 1u. If f P X 1 with }f} ď 1, then |f pxq| ď }f}}x} ď }x}. This shows
α ď }x}. On the other hand, let

M “ tβx : x P Ru,and define
g : M Ñ R : gpβxq “ β}x}.Note g P M 1 and }g} “ 1. By the preceding corollary, we can extend g to f P X 1 with f pxq “ gpxq “ }x},while preserving the norm }f} “ }g} “ 1. By definition of α as supremum, we have α ě |f pxq| “ }x}, andevidently this supremum is attained by f .

Proposition B.6 (Geometric Hahn-Banach Theorem; [Con85] Corollary 6.8). Let X be a normed linear space
over R, M a closed linear subspace, and x0 P XzM with d “ distpx0,Mq. Then, there exists f P X 1 with
}f} “ 1{d such that (i) f px0q “ 1 and (ii) f pxq “ 0 for all x P M.

Remark B.7. Since M is a closed linear subspace, x0 R XzM implies d “ distpx0,Mq ą 0. Indeed, suppose thecontrary, so 0 “ distpx0,Mq “ infyPM }x0`y}. Then, there is a sequence tynu Ď M such that lim
nÑ`8

}x0`yn} “0. This means lim
nÑ`8

yn “ ´x0 and this limit belongs to M because M is closed. But M is also a linear space,so we conclude x0 P M , contradicting x0 P XzM .The Geometric Hahn-Banach Theorem is interpreted to mean that a closed linear subspace M can be separatedfrom any outside vector x0 P XzM , not only by a positive distance, but also by a vector (bounded linear functional
f P X 1) so that f is orthogonal to M but not orthogonal to x0.
Proof of Proposition B.6. Let Q : X Ñ X{M be the quotient map. By definition,

}x0 `M} “ inftx0 ` y : y P Mu “ distpx0,Mq “ d ą 0.
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By preceding corollary, there is a bounded linear functional g P pX{Mq1 such that gpx0`Mq “ d and }g} “ 1.Define
f : X Ñ R, x ÞÑ d´1g ˝ Qpxq.Clearly, f is continuous, f pxq “ 0 for all x P M , and f px0q “ 1.To verify }f} “ d´1. Note on the one hand,

|f pxq| “ d´1|g ˝ Qpxq| ď d´1}g}}Qpxq} ď d´1}x}, @x P X,

and hence }f} ď d´1. On the other hand, since }g} “ 1, by the definition of operator norm and continuity of
g, there is a sequence txnu Ď X such that |gpxn `Mq| Ñ 1 and }xn `M} ă 1 for all n. Let tynu Ď M be asequence such that }xn ` yn} ă 1. Then,

|f pxn ` ynq| “ |d´1gpxn `Mq| Ñ d´1,
and hence }f} ě d´1. We conclude }f} “ d´1, as required. This completes the proof of Proposition B.6.
Proposition B.8 (Bounded Linear Functionals Separate Points). If x, y are two distinct points in a normed
linear space X , then there is some bounded linear functional f P X˚ for which f pxq ‰ f pyq.

Proof. At least one of x, y must be nonzero, so assume x ‰ 0 without loss of generality. Take M “ spanpxq.If y P M , then define bounded linear functional f on M by setting f pxq “ 1 and extend f to X by Hahn-Banach;since y ‰ x , it follows that y “ αx for some α ‰ 1 and hence f pyq “ f pαxq “ αf pxq “ α ‰ 1 “ f pxq, asrequired.Now suppose y R M . So d “ distpy,Mq ą 0 because M is closed for being a 1-dimensional linear subspace.Then, Proposition B.6 yields some f P X˚ for which f pyq “ 1, f pxq “ 0. This completes the proof.
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C Open Mapping Theorem
Theorem C.1 (Open Mapping Theorem; [Con85] Theorem 12.1). If X and Y are Banach spaces and A : X Ñ Y
is a continuous linear surjection, then ApGq is open in Y whenever G is open in X .

Proof. For r ą 0, x P X and y P Y , let BX px, rq :“ tx 1 P X : }x 1 ´ x} ă ru denote the open ball in X centeredat x of radius r and BY py, rq :“ ty1 P Y : }y1 ´ y} ă ru denote the open ball in Y centered at y of radius r .When x “ 0 (or y “ 0 respectively), we write simply BX prq “ BX p0, rq (and BY prq “ BY p0, rq).
Claim 1. 0 P int cl ApBprqq for any r ą 0.

Proof fo Claim 1. Since Ť8

k“1 BX pkr{2q “ X and A is surjective, we have
Y “

8
ď

k“1 cl ApBX pkr{2qq “ 8
ď

k“1 k ¨ cl ApBX pr{2qq.
Baire Category Theorem 117: Every complete metric space X is a Baire space, i.e., any countable inter-
section

Ş

nPN Un of open dense sets Un Ď X is dense in X .Immediately, Banach spaces X and Y are Baire spaces. For a contradiction, suppose each closed setcl ApBX pkr{2qq, k ě 1, has empty interior. Then each complement Y zcl ApBX pkr{2qq, k ě 1, is open and densein Y . It follows that the countable intersection
8
č

k“1Y zcl ApBX pkr{2qq “ Y z
8
ď

k“1 cl ApBX pkr{2qq “ H
is dense in Y , a contradiction. We thus conclude that there is some k ě 1 for which k ¨ cl ApBX pr{2qq “cl ApBX pkr{2qq has nonempty interior. Hence, V :“ int cl ApBX pr{2qq ‰ H.Let y0 P V and s ą 0 be such that BY py0, sq Ď V Ď cl ApBX pr{2qq. Let y P BY psq so that y0 ` y P
BY py0, sq Ď cl ApBX pr{2qq. Now that both points y0, y0 ` y P cl ApBX pr{2qq, there are two sequences txnunand tznun in BX pr{2q such that Apxnq Ñ y0 and Apznq Ñ y0 ` y. We thus obtain tzn ´ xnun Ď BX prq with
Apzn ´ xnq Ñ y P BY psq. Since y P BY psq was arbitrary, we have shown that BY psq Ď cl ApBX prqq. From0 P int BY psq, we conclude 0 P int cl ApBX prqq, as claimed.
Claim 2. cl ApBX pr{2qq Ď ApBX prqq for any r ą 0.

Proof of Claim 2. Fix y1 P cl ApBX pr{2qq. Since 0 P int cl ApBX pr{4qq according to Claim 1, it follows that
y1 P ry1 ´ cl ApBX pr{4qqs X ApBX pr{2qq ‰ H.Let x1 P BX pr{2q such that Apx1q P ry1 ´ cl ApBX pr{4qqs. Then, Apx1q “ y1 ´ y2 for some y2 P cl ApBX pr{4qq.Continuing this way, we obtain two sequences

txnun Ď BX pr{2nq and tynun Ď cl ApBX pr{2nqqsuch that
Apxnq “ yn ´ yn`1.Since xn P BX pr{2nq, it follows that }xn} ă r{2n, hence the sequence třN

n“1 xnuN Ď X is Cauchy, and thereforethe limit
x :“ 8

ÿ

n“1 xn P Xexists with }x} ă r .Also,
n
ÿ

k“1Apxkq “
n
ÿ

k“1yk ´ yk`1 “ y1 ´ yn`1.
17For a great discussion of the Baire Category Theorem and the (strong) Open Mapping and Closed Graph Theorems as its consequences,see https://www.ucl.ac.uk/~ucahad0/3103_handout_7.pdf.
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But yn P cl ApBX pr{2nqq implies that }yn} ď }A}r{2n and hence yn Ñ 0. It follows from the continuity of Aand x P BX prq that
y1 “ 8

ÿ

k“1Apxkq “ Ap
8
ÿ

k“1 xkq “ Apxq P ApBX prqq.

Since y1 P cl ApBX pr{2qq was arbitrary, the claim is proven.We now return to the proof of the Open Mapping Theorem. Note Claims 1 and 2 together imply that
0 P int ApBX prqq, @r ą 0.

Take any open set G Ď X . For each x P G , let rx ą 0 be such that BX px, rxq Ď G . Since 0 P int ApBX prxqq, itfollows that
Apxq “ Apxq ` 0 P Apxq ` int ApBX prxqq “ intrApxq ` ApBX prxqqs “ int Apx ` BX prxqq “ int ApBX px, rxqq,

and hence there is some sx ą 0 for which BY pApxq, sxq Ď ApBX px, rxqq. We then have
ď

xPG
BY pApxq, sxq Ď

ď

xPG
ApBX px, rxqq “ Ap

ď

xPG
BX px, rxqq “ ApGq Ď

ď

xPG
BY pApxq, sxq.

This shows ApGq “ Ť

xPG BY pApxq, sxq is open and completes the proof of the Open Mapping Theorem.
Corollary C.2 (Inverse Mapping Theorem; [Con85] Theorem 12.5). If X and Y are Banach spaces and A : X Ñ Y
is a bounded linear bijection, then its inverse A´1 is also bounded.
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