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24 Feb & 3 Mar 2021 Edmilson Check (Lip, || - [lLip) is a Banach space;

Prove | (] < |LZI‘UP for complex Lipschitz observables ¢ : [0,1] — C
with § rdLeb = 0;
Discuss how norm dominance in the subspace is related to the ideas
of compact embeddings

10 Mar 2021 Herbert Sarig pp25-26 Appendix A1 Conditional Expectations;
Prove Kac's Lemma;
Mention ergodic theory in terms of conditional expectation with respect
to the o-algebra of sets invariant under the transformation.

17 Mar 2021 Hans Sarig pp10 Exercise 2.5.

30 June 2021 Gabriel Sarig pp27-28 Appendix A2 Mixing and Exactness for the Gauss Map

TBD Edson BV: the space of functions with bounded variation; [discuss with Tiago],

cf. Viana's Stochastic Dynamics for Deterministic Systems Chapter 3




0 2020.12.16 Meeting 0: Introduction by Tiago

0.1 Invariant Measures

Given measurable transformation 7 : X — X on measurable space (X, B), our interest will be on invariant
measures y for T, that is, (T~ (A)) = p(A) for all Ae B.

Why the interest in invariant measures?

1. Invariant measures are weighted averages of ergodic invariant measures (ergodic decomposition), which
capture the long-term behavior of a “typical” trajectory (Birkhoff: time average limits to space average
a.e)

ergodic y may not be informative if y = 0,, where T(a) = a, because {a, a, - - - } is the only p-typical
trajectory. To say its time average limits to space average is to say

$(a) = lim 72(# o T"(a J¢d6 =

But we knew this long-term behavior already, as a is always fixed.

other times, e.g., when  is equivalent to Lebesgue measure on X, then we may interpret ergodicity
to mean that space average coincides with time average for practically all initial conditions.

2. more reasons?
Why is invariant measure defined via pre-images o T~" = p, as opposed to forward-images pyo T = 1/?
1. Trivially, when T is measurably invertible, the two candidate notions of invariance are equivalent.

2. Less trivially, Tup = po T~ is the natural way for T to evolve , whereas v = o T is not. Indeed,
invariance means that p is fixed by the dynamics on the space of measures on (X, B) induced by
measurable transformation T. To define invariance, we first need to specify this induced dynamics by T.

Let ¢ be a given measure on (X, B); this is interpreted as an initial distribution of masses on X. We
explore the natural/possible ways for T to “evolve” p, that is, what becomes of the distribution y after
each point x € X has evolved into T (x).

First, Tep = po T is a natural way to evolve 1. To measure any event A € B one time unit into the
future, we take
Ten(A) = p(T~'(A),

where T~'(A) is measurable by measurability of 7. The forward direction of time is naturally understood
as forward/positive iterates of T, so that, relative to the present A, T~'(A) speaks of the past while T(A)
of the future. In this way, the past y(7~"(A)) informs/determines the present T, u(A).

Now let us try to evolve p a different way, namely, into a measure v on (X, B) defined by
v(A) = p(T(A), VAeB.
(a) problem of direction of time: the future u(7(A)) informs/determines the present v(A); this is
unnatural in that it violates the flow of time.

(b) problem of measurability: the measurability of T does not guarantee that T(A) is measurable for
all measurable sets A.

(c) problem of well-definedness: if there are two disjoint sets Ay, Ay € B with T(A)) = T(A)) = A
then
V(A1) + /J(Az) = V(A1 U Az) = ,U(T(Aq \ Az)) = /J(A) = V(A[), [ = 1,2,

which implies p(A) = v(A1) = v(A) = 0. In order that this implication does not lead to contradic-
tions, we must require the pair (T, 1) be such that

Al A eBwith Ay n Ay = &, T(A) = T(A) = u(T(A)) =0.



This happens when T is injective. If T is merely injective but not surjective, then 7~ is not defined
on the entire space X. However, when T is bijective, by taking S = T~', we reduce to v = Sy,
so this way of evolution simply runs time backwards.

What about when T is not injective, but (T, i) just happens to satisfy the above requirement?

A question related to the previous one is why a measurable transformation is defined via pre-images 7~'(B)
B, as opposed to forward-images T(B) < B?

An easy (circular) answer is that we need this notion of measurability to properly define T,p.

Proposition 0.1 (Characterization of Invariance via Observables). Let (X, B, u) be a measure space and T :
X — X a measurable transformation. Then, u is T-invariant if and only if

| @oTan=| odu voel')
X X
Proof. (=) By invariance, we have
J Iyo Tdy= J Lr—iaydp = p(T7(A) = p(A) = f Iady, VAeB.
X X X

Linearity generalizes this to all simple functions ¢, and Dominated Convergence generalizes to all ¢ € L'(p).

(<) By taking ¢ = 14 € L'(1), we have

p(T(A) = f Lr—aydy = J lao Tdy= J Lady = pu(A), VAeB.
X X X

This completes the proof. O

0.2 Absolutely Continuous Invariant Measures

Not all invariant measures are informative. Suppose T has a fixed point xo = T(x9) € X. Then, the point
measure 9y, is T-invariant
T*éxo = 5T(Xo) = 5)(0-

This only repeats the given information that xp is fixed by T, only in the language of the induced dynamics of
T4 on the space of measures.

More generally, for any periodic orbit x = {xo = T”(x0),- -+, x,—1} of T of period p = 1, the average of point
measures on each point in the periodic orbit

5)(0 + o4 6)(/7—1
1%

Oy :=

is an (uninformative) T-invariant probability measure.

An interesting dynamical system (e.g. Bernoulli maps on the circle, Anosov diffeomorphisms, the Horseshoe)
tends to have many periodic orbits, which give rise to many uninformative invariant measures. It is therefore
natural to restrict our attention to the "meaningful” or “informative” invariant measures.

When X is an open set in RY (or more generally, a Riemannian manifold), invariant measures which are
absolutely continuous with respect to the Lebsgue (Riemannian volume) measure on X tend to be meaningful,
in the following sense.

A pointwise property Pg (e.g. long-term statistics of a trajectory) is understood to be observable (in physical
and numerically simulated experiments) if it holds for every point in a set B of positive volume Leb(B) > 0.
Absolute continuity of invariant measure p < Leb implies

Leb(B) >0 for any B with y(B) > 0;



in other words, positivity of y(B) guarantees observability of property Pg. In this sense, absolutely continuous
invariant measures are meaningful and informative. A famous example is the Liouville measure for Hamiltonian
systems.

Moreover, with the additional restriction of absolute continuity, one may hope to, in some cases, establish
existence and uniqueness of an acip (absolutely continuous invariant probability measure), and then arrive at
further dynamical insights.

There is a natural way to construct absolutely continuous measures. Let f € L'(Leb). Then, the finite measure
Uf given by

pr(A) = f fdLeb.
A

is absolutely continuous with respect to Leb. This construction can also be reversed.

Theorem 0.2 (Radon-Nikodym, [LM94] Theorem 2.2.1). Let (X, A, i) be a o-finite measure space and v a finite
measure on (X, A) with v « p. Then, there is a p-essentially unique f € L'(y) with f = 0 such that

v(A) = J fdu, VAe A
A

We write f = g—x and call it the Radon-Nikodym derivative of v with respect to p.

We now turn the discussion on invariance of absolutely continuous measures into the context of Radon-Nikodym
derivatives. Consider f € L'(Leb) and py its induced a.c. measure. By Characterization of Invariance via
Observables Proposition [0.1] T-invariance of measure py reduces to

[ oo Tam = [ oam, voellw)
X X

By change of variables formula,

-
J((;So T)fdlLeb :J ¢ o Tdyy :f od Ty iy :f ¢d *H Leb,
X X X x  dleb
where T
S Olslr
= giep

denotes the Radon-Nikodym derivative. For its existence, we need to ensure T, p; < Leb; this will be guaranteed
by requiring the transformation T to be “nonsingular”. More details will be given in the next lecture. Under
appropriate hypotheses, the Transfer Operator T is defined for all f € L'(Leb) and returns T(f) e L'(Leb).

Briefly recapped, the nonsingular transformation 7 : X' — X induces a new dynamics on the space of (finite
a.c) measures on X given by the push-forward T, which in turn induces the dynamics T on the space ['(Leb)
of Radon-Nikodym derivatives (for signed real measures).

We illustrate how f — T is related to the dynamics of T.
Example 0.3 (Bernoulli Map). Consider the circle S' = R/Z and the Bernoulli map

7:5755S"  x—2x modl.



O L
Figure 1. The inverse image of an interval A in the circle under the Bernoulli map is the union A; U A; of two
intervals of half length.

We claim Leb is invariant for 7. It is easy to check invariance for intervals: if A is an interval on the circle,
then

1 1
Leb(T~"(A)) = Leb(A + Ay) = zLeb(A) + ZLeb(A) = Leb(A).
Since the intervals generate the Borel g-algebra on the circle, T-invariance of Leb follows.

Note that the invariance of Leb is equivalent to

A~

=1
Hence, any constant function is invariant under T

To calculate 71 for a general f e L'(Leb), take observable ¢ : ST — R.

1/2

1
S@F()) + [ p2x = ()

0 1/2
1 1 1 F(9) +F (2
y\ 1 y+1\1 f 2 2
= f(Z)= fl=——1]zdy= ———ay.
L ¢(y) (2> zdy+f0 ¢(y) ( > >2dy . P(y) > dy
where we change variables y = 2x in the first integral and y = 2x — 1 in the second integral. This shows that

o ()

Tfy) = >

J (6o T)fdLeb :J1 ¢(2x  mod 1)f(x)dLeb(x) =
St 0

When f e L['(Leb) is a Lipschitz function with Lipschitz constant K > 0, we investigate the Lipschitz constant
of Tf. Forany x,y € ST, we have

x x+ f(9)+F (L Wy r(uy F(E) — (e
P10 — ()| — f(2)+2f(21)7 (2)+2( =) _ f(z)zf(g)+ (2)2 (%)
XY _f(Y £y —f (e
Jr-re), [0 () Koty s et g0~ Kt

This shows 1 € Lipg . and iterates into

T'fe Lipg/m VneN.



So T takes a K-Lipschitz f into Lipschitz functions T7f with Lipschitz constants shrinking exponentially fast
to 0. This is a good indication that the operator T “squashes” all Lipschitz functions into constant functions,
which are invariant under T.

In the next lecture, we will give a precise argument by showing that T contracts on a subspace of the space of
Lipschitz functions, appropriately normed.

Tiago remarks that this contraction argument scheme, together with Banach Fixed Point Theorem, is a very
general one in Transfer Operator methods for constructing invariant Radon-Nikodym derivatives, and thereby
invariant a.c. probability measures. The magic (underrated component) of this scheme is to find the appropriate
subspace H of Radon-Nikodym derivatives for T to act on, and to norm it appropriately so that T contracts
thereon, while ensuring a certain domination of norms, in this case:

[flloo < Lip(f),

where Lip(f) is the best Lipschitz constant of f.



1 2021.1.6 Meeting 1: Climenhaga Notes

In this lecture, we hope to define the transfer operator for a nonsingular transformation, finish Climenhaga’s
lecture notes, making rigorous the contraction argument on the space of Lipschitz functions and understanding
the magic-ness of the domination of norms. For a continuation of Climenhaga’s notes, follow the posts here:
https://vaughnclimenhaga.wordpress.com/2013/01/30/spectral-methods-in-dynamics/!

In this lecture, we follow Vaughn Climenhaga’s brief lecture notes [Cli13] on Spectral methods in dynamics, in
order to deepen and sharpen the intuition of the subject which Tiago introduced last time.

Let X be a compact metric space; in this lecture, it is okay to assume X is the compact unit interval [0, 1].
And let T : X — X be a continuous (or at least piecewise continuous) transformation. Here, T specifies the
dynamical system with states in X, and is taken to be “chaotic’, in the sense that two nearby states will rapidly
be driven far apart by the dynamics, e.g., doubling map on the circle x — 2x mod 1.

A measurable function ¢ : X — C is called an observable, and represents an observation or measurement of
the dynamical system (T, X) made at time 0. Measurements made at future times k > 0 are given by the time
series

{po Tz0.
When X is also a probability space, then these are random variables and characterize the statistical properties
of dynamical system (T, X). Our central interest is to investigate whether or not these random variables are
independent or uncorrelated, so as to conclude statistical results.

For independent and identically distributed (iid) random variables, e.g., a fair coin flip, there are various
statistical results, including the Strong Law of Large Numbers (SLLN) and Central Limit Theorem (CLT).

Theorem 1.1 (Strong Law of Large Numbers; [Dur13] Theorem 2.4.1). Let Xy, X, -+ be pairwise independent
and identically distributed random variables with E[|X;|] < 4+o0. Then,

X1+"'+Xn as.

n n——+0o0

p = E[X].

Theorem 1.2 (Central Limit Theorem; [Dur13] Theorem 3.4.1). Let X, X5,--+ be a sequence of iid random
variables with E[X;] = y and Var[X;] = 0? € (0, +0). Then,

n—-+0o0

1 . in distribution
ENG ;(Xz —pu)————— N(O.1).

In many cases, it turns out that both can hold for our random variables {¢o T*} of interest, even though they are
not really iid because of the strong correlation between ¢ and ¢ o T* for small times k. When this correlation
decays as k — +0, it is reasonable to ask if SLLN and CLT hold.

1.1 Invariance and ldentical Distribution
Let y be a Borel probability measure on X. We say p is T-invariant if
po T='(A) = u(A), V Borel set Ac X.

If we interpret 1(A) as the probability of event x € A occurring at time 0, then p(7~"(A)) denotes the probability
of event x € T~'(A) occurring at time 0, or equivalently, T(x) € A, that is, x lands in A after 1 unit of time.
Therefore, invariance amounts to the condition that the probability of event A at time 0 (x € A) is the same as
it is at any future time k = 0 (x € T—*(A), or equivalently, T*(x) € A).

Invariance of the probability measure p on state space X ensures that the sequence of random variables
poTF: X —=C
are identically distributed, sharing the common distribution
(o T )ap=no(poT) " =poT o™ =pog™" = pup.

Independence, however, as mentioned before, still fails.


https://vaughnclimenhaga.wordpress.com/2013/01/30/spectral-methods-in-dynamics/

1.2 Ergodicity, Birkhoff and SLLN

Recall Proposition which characterizes invariance defined in terms of Borel subsets via L' observables:
poT ' =p — f(pdy:f(ponu, Voe L'(X, ).

In other words, invariance means that the expected value E,[¢] = { @du of any observation ¢ made at time 0
is the same as if it is E[p o T¥] = { @ o T*du to be made at any future time k > 0.

Recall also ergodicity of invariant probability measure p with respect to transformation T, defined equivalently
by any one of the three conditions:

1. if event A is invariant, that is, A = T~'(A), then A is either null or full, that is, z(A) € {0, 1}.
2. if observable ¢ € [ (X, u) is invariant, that is, ¢ = @ o T p-a.e, then ¢ = const p-a.e.
3. p cannot be written as a convex combination of two other invariant measures.

The ergodic thesis is that “time average equals space average”.

Theorem 1.3 (Birkhoff; [Dur13] Theorem 7.2.1). If p is an invariant probability measure for T : X — X, then
for any observable @ € L'(X, i), we have

&gl
*Z ¢ o TH(x) === E[glT],

n~>+so

where T denotes the a-subalgebra consisting of almost invariant events.
The ergodic thesis is a direct consequence of this theorem applied to an ergodic invariant probability measure.

Corollary 1.4. If y is an ergodic invariant probability measure for T : X — X, then T is trivial, i.e, consists of
either full or null events, and hence

n—1

fijork 22 8L, Bly|T] = E[E[¢|Z]] = E[¢].

This is precisely the SLLN for our sequence of random variables {¢ o T*}.

1.3 Mixing and Decay of Correlations

To obtain CLT, we really need to worry about independence. Let us recall some definitions of independence in
probability space (X, B, u).

1. two events A, B are independent if y(An B) = u(A)u(B);
2. two o-subalgebras By, 3, € B are independent if any pair of events B; € B, i = 1,2, are independent;

3. two random variables ¢, : X — Y are independent if their induced o-subalgebras ¢~'(By) and
=1 (By) are independent.

If the state of our invariant system (T, u) at time k were (completely) independent of the state at time 0, then
B and T—%(B) would be two independent g-subalgebras, that is,

H(An T75(B)) = p(Au(T~*(B)) = p(Au(B), VA BeB.
Example 1.5 (Bernoulli Shift/ Coin Tosses). Even though it is highly unlikely that a nontrivial dynamical system
at time 0 is truly independent of itself at time k > 0, there are cases where the observation ¢ at time O is

truly independent of the same observation ¢ o T* at time k > 1. Consider the experiment of tossing a fair coin,
modelled by Bernoulli shift on two symbols

o:5f -1, P=ph

10



If we simply observe the outcome of the experiment at time k = 0, then we have iid random variables (projections
down to the k-th coordinate)
T = JIp © Uk.

As we consider deterministic systems with short-term correlations, this complete independence generally fails,
but we can still ask for it to hold asymptotically:

lim u(An T5(B)) =p(Au(B), VA BeB.

k—+00

This is the defining condition for a mixing measure.

In order to study the statistical behavior of system (T, 1), we need to understand the “rate of mixing’, that s,
the rate at which correlations decay to 0.

In the same spirit as in Proposition[0.T] the mixing property defined in terms of Borel subsets can be characterized
via observables:

k—+00

lim J(q)o T)dy = J@dufwdu, Vo, g (X, p).

A priori this convergence can happen arbitrarily slowly for a mixing measure g, and it generally does. However,
on a “reasonable nice” subspace of [%(X, u) — where the transfer operator has nice “spectral properties’, this
convergence happens exponentially fast. To remind ourselves of the goals now:

e find invariant measures for system T : X — X, some of which are uninformative;
— for the ergodic invariant measures, Birkhoff yields SLLN;
x within the ergodic invariant measures, we now want to find the ones for which
- correlation decays exponentially fast;
- CLT holds;

- maybe more statistical laws hold.

1.4 Examples of Piecewise Expanding Interval Maps

Example 1.6 (Doubling Map). On the compact unit interval X = [0, 1], consider doubling map

T: X=X, x—2x mod1.

Tx

Figure 2: The doubling map T : x — 2x mod 1.

11



1. Leb = TiLeb is invariant and, in fact, ergodic;

2. the derivative T'(x) = 2 for all x € [0,1/2) u (1/2,1]. (If we consider the doubling map on the circle
instead, then x = 1/2 will no longer be a discontinuity and so 7/ = 2)

Example 1.7 (Piecewise Expanding Interval Map). Partition the compact unit inverval [0, 1] into finitely many
subitervals 1, -+, ly. Let T 1 [0,1] — [0, 1] be a map whose restriction to the interior of each subinterval /; is
C? and

|T'| > A>1, where differentiable.

Tx

T k] ™ s s

| —— ——— —

L— X
i

Figure 3: A piecewise expanding interval map.

The Lebesgue measure serves as a reference of “observability” in the sense that a property that holds for a set
of points of positive Lebesgue measure is understood as observable in physical and simulated experiments.

As Leb is already invariant and ergodic for the doubling map, it is therefore natural to talk about statistical
properties of the doubling map system with respect to Leb.

The more general piecewise expanding interval map T is chaotic in the sense that nearby points are driven
far apart exponentially quickly by the expanding condition on T. But Leb is generally not invariant for T, so
which invariant measure p should we use to study its statistical properties?

A good restriction is absolute continuity (1 « Leb), because it ensures that a p-a.e. result will hold for Leb-a.e.
point and hence will be observable.

Let M denote the space of absolutely continuous probability measures on X, and D(X, Leb) the space of
densities
D(X,Leb) := {ye L'(X, Leb) : ¢y = 0, |¢] ;1 =1}

12



Radon-Nikodym Theorenﬂ provides a correspondence between M and D.

dy
M*’D(X,Leb), UH@

DX, Leb) > M, o iy () :=L¢dLeb

1.5 Transfer Operator
The transformation T : X — X induces push-forward dynamics on the space of (a.c. probability) measures
It M > M,y T,
which, via the Radon-Nikodym correspondence, give rise to dynamics on the space of densities
DD, Ty,

where ?Lp is the density of a.c. probability measure T, py. To guarantee the existence and uniqueness of ?L/I
we use the Radon-Nikodym Theorem. For this, we require the nonsinqularity condition on transformation T.

Definition 1.9 (Nonsingular Transformation). Let (X,.A, y) be a measure space. A measurable transformation
T : X — X is called nonsingular with respect to p if

p(A)=0 = p(T7'(A) =0 VAeA

Definition 1.10 (Transfer Operator & Koopman Operator). When the transformation 7 : X — X is nonsingular,
and ¢ € L'(X, Leb), then the push-forward T, takes the a.c. signed finite measure ty into another a.c. signed
finite measure Ty py, which necessarily has an essentially unique Radon-Nikodym derivatlveﬂ

e dlapy
Ty = L1(X, Leb).
U= gep €L (XiLeb)

Equivalently, the transfer operator may be defined as the adjoint of the Koopman operator
L®(X,Leb) > L®(X,Leb), ¢@+— @oT.

We remark that (i) @o T € L® for any ¢ € L, provided T is nonsinqular; (i) L* is the dual of L'; and (iii) the
Koopman operator is bounded and linear. Linearity is clear. To check boundedness, note, by nonsingularity of
T, we have

o T =esssuplpoT|<esssuplo| = @]

1

Theorem 1.8 (Radon-Nikodym, [LM94] Theorem 2.2.1). Let (X, A, i) be a o-finite measure space and v a finite measure on (X, A) with
v < 1. Then, there is a p-essentially unique f € L' (y) with f > 0 such that

v(A) = J fdy, VAe A
A

We write f = 37‘// and call it the Radon-Nikodym derivative of v with respect to .

2For the Radon-Nikodym derivative of an a.c. signed finite measure, we need a more general version of Radon-Nikodym Theorem.
Theorem 1.11 (Lebesgue-Radon-Nikodym; [Rud87] Theorem 6.10). Let i be a real positive o-finite measure on a measurable space (X, F),
and A another complex measure on (X, F).

(a) There is then a unique pair of complex measures Aq and As on (X, F) such that
A=Ao+As, Aa<py, As Ly
Moreover, if A is real positive and finite, then so are A, and As.

(b) There is a unique h € L' (1) such that
ho(E) = j hdy, VEeF.
E

13



The transfer operator
T:LY(X,Leb) = L'(X,Leb), ¢ Ty,

being the dual of the Koopman operator, is then defined by duality equation

J((p o T)dLeb = Jq;(ﬂa)dLeb, Vg e LP(X, Leb).

The two definitions are equivalent by essential uniqueness.

When T : X — X is a piecewise expanding map on the compact unit interval X = [0, 1], then T is nonsingular,
and we may write out explicitly the action of the transfer operator:

s _ATeby Y(y)

Indeed, denote the restrictions of T on each subinterval by T; := T|, and observe each T; is monotone because
|T/| = A > 1. So each T; is a diffeomorphism from /; onto its image T(/;). By the Inverse Function Theorem,
we have

(T7(0) = = x€l

To verify the formula (T), it suffices to check

J 3 idLeb(x):T*uw(A), VA€ B.

ye{T~ 1X}

We first split the preimage 7~'(A) into the finite disjoint union
= U 7
where TL-_1 C [; are disjoint, and then compute
Tattg(A) =iy (T~ (A)) = j Gy = [ )y
T=1(A) Ui T (A

—ZJ because the finite union is disjoint
(A)
N Rat) ]detDTﬂ :

-[ ZWWX”’M
-], 2,

6{71}

change variables y = 7,7 (x)

The boundaries of the subintervals can be ignored here because they form a null set. In fact, the formula (T)
holds in general for C' expanding maps on a compact Riemannian manifold, cf. Chapter 11 of [VOT6], and
can be further extended to piecewise invertible expanding maps on a compact subset in Euclidean space, cf.
[Sau98].

The transfer operator Tis useful, firstly, because it reduces the quest for an acip to that of a fixed density, ie,
a fixed point of T in D, that is, an eigenfunction of T with eigenvalue 1; secondly, because by iterating the
duality equation, we otain

f((po TKYdleb = J<p(?k¢)dLeb, pel®(X,Leb), ¢el'(X, Leb), k=0,
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and thus the decay of correlations condition

k—+00

lim J(wo T)dy = kL’LTwﬁp(?kw)dLeb = fqidufwdu, Vo, gre (X, p)

can be understood in terms of the spectral properties of the transfer operator T apart from its eigenvalue 1.

The (normalized) eigenfunction corresponding to the largest eigenvalue is the density of the acip, and the
presence of a “spectral gap” between this eigenvalue and smaller eigenvalues leads to exponential decay of
T ¢y when §pdLeb = 0. This is how spectrum of T informs decay of correlation and other statistical properties.

Viana in Stochastic Dynamics for Determinisitc Systems proves the Central Limit Theorem for smooth expanding
maps on manifolds and for piecewise expanding maps. His results imply that CLT holds for our case of piecewise
expanding interval maps, but his proof method relies on an abstract CLT based on the martingale central limit
theorem, and therefore may not be very relevant to our discussion of the Transfer Operator method.

Though he does use the Transfer Operator method to obtain decay of correlations for a different class of
observables; Viana's Transfer Operator method employs the projective metric on cones of densities, as opposed
to Climenhaga'’s Lipschitz norm.

1.6 Decay of Correlations for Doubling Map

From Tiago's introductory lecture, we know the transfer operator T for the doubling map T : [0,1] — [0,1],
x — 2x mod 1 has the form

~ ) 4+ x+1
T(x) = @) v () 2‘” 2 ), g e L'([0,1], Leb).
(Reality check: this is consistent with formula [T])

Note R
=1,

which is equivalent to the Lebesgue measure itself being invariant for T.

To prove exponential decay of correlations, we need to find a suitable Banach space < L', where T acts with
a “spectral gap”.

On the space Lip of Lipschitz continuous functions ¢ : [0, 1] — C, the best Lipschitz constant

|¢’|L1p1: sup M

x#ye[0,1] Ix =yl

is a semi-norm, which fails to be a true norm only because it vanishes on all constant functions.

We improve upon | - |ij, and define a true norm | - [, on Lip by
[@lp = ¢l + [¢lp-
The key reason for considering | - |ip and | - [ is that T shrinks the semi-norm | - [Lp by half:

A~ '] '
[Ty < §|¢'\up, Vi € Lip,

as was proved in the last lecture.

Since every ( € Lip can be written into .
Y=cyl+ 4,
where ¢, = {dLeb is the average of ¢ and SLZJdLeb = 0, it follows that the space Lip decomposes into

Lip=Cl®H, H:= {QJeLip:JJJdLeb=O}.
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Note this decomposition is forward-invariant under 7. Indeed, T1 =1 implies ?(((31) = C1; on the other hand,
if {dLeb = 0, then

J?fdeeb N f(1 o T)ddleb = J@dLeb =0

and so T(H) < H.
Also, if (€ H, then |||, < |L21‘up. Indeed, the range ([0, 1]) of observable ¢ has diameter

diamdh([0, 1]) < |lupdiam([0,1]) = [d]us,
and contains O in its closed convex hul because SLZIdLeb = 0. We thus conclude
|1 = ess sup|d| < diamdi([0,1]) < |Plp, Ve H.
To estimate the decay of correlations
Ce(op, ) = J(gp o TF)ydLeb — (J godLeb)(f ¢dleb) = J(p(?kw)dLeb - (J @dLeb)cy,
:Jﬁk(cw + J)dLeb — C¢f(de€b = Jq;(?kﬁj)dLeb,

note
[ T5 e < [TEPlp < 275 dlp = 275l Ve H,

and hence we conclude, for ¢ € L'([0, 1], Leb) and ¢ € Lip, the correlations decay exponentially fast

|Gl )] = U<P(Tktzf)dLeb <ol I T Gl < 27 gl |l

1.7 Spetral Gap

Definition 1.12 (Spectrum). The spectrum of a bounded linear operator A : B — B on a Banach space B is
defined to be
o(A) ;= {Ae C:A— Aid is not an invertible operator on B}.

Remark 1.13. 1. the point spectrum consisting of all eigenvalues of A is contained in the spectrum o(A),
but they are not always equal.

2. the spectrum ¢(A) is always compact and nonempty.

From previous discussion on doubling map T, we know 71=1andso 1is an eigenfunction corresponding to
eigenvalue 1 of operator T.

By invariant decomposition Lip = C1 @ H, we deduce

o(T) = {1 ua(T|y).

A~

In other words, apart from the eigenvalue 1, the spectrum o(T) is determined by its action on H.

3To see this geometrically, one may view the integral of / against the probability measure Leb on [0,1] as an average for all values
QJ(X) x € [0,1]. This average is approximated by a finite mixture (convex combination) evenly spaced out on the interval, that is,

1
n+1

8ijn 2> Leb.

M=

Hp =

i=0

Hence,
n

e St = [ — [ dareb =0
i=0

This gives a direct proof that 0 = SL}JdLeb is in the closed convex hull of LZJ([O 1]). For a more general discussion of how the in-
tegral against a probability measure compares with a convex combination, see https://mathoverflow.net/questions/164836/
is-an-integral-against-a-probability-measure-in-the-convex-hull-of-the-range
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Definition 1.14 (Spectral Radius). The spectral radius p(A) of a bounded linear operator A: B — B on a
Banach space B is defined to be
p(A) :==sup{|A| : Ae a(A)}.

From functional analysis (see [Con85] Proposition 3.8), we have

—_ i n|1/n
p(A) = lm [A"[7" < [A].

where || - | is any norm on B.

On H < Lip, the semi-norm | - |, becomes a true norm, because the only constant function in H is the zero
function. And norm | - |, is equivalent to || - ||

1Dl < [Plup = [Pl + [ Dlup < 20dp, VP e H.

Since the operator T shrinks the best Lipschitz constant by half, it follows that

p(T11) < | Tllp < 1/2

i -

hi 1

Figure 4: The spectrum U(/f_) of the transfer operator T for the doubling map T : x — 2x mod 1 has a gap.

Definition 1.15 (Spectral Gap). A bounded linear operator A: B — B on a Banach space B is said to have a
spectral gap if

1. A has at most finitely many eigenvalues on the unit circle;
2. the rest of the spectrum g(A) is contained in a disk centered at 0 of radius p < 1.

In order to generalize our argument to a piecewise expanding interval map T, we need to find a suitable Banach
space B < L'([0, 1], Leb), where the transfer operator T acts with a spectral gap. It then follows that

1. the eigenfunction(s) corresponding to eigenvalue 1 are precisely the densities for acim; there will not be

any eigenvalue outside the unit disk, because T is a Markov operator and so, in particular, | TL/JHLw [
for all ¢ e L.

2. fix any r € (p, 1), where D(0, p) contains the rest of the spectrum a(ﬁg). Then, there is C. > 0 such
that ~
T8 < Gr*.

So the correlations decay exponentially fast at rate r, for any pair of observables ¢,y chosen from
suitable function spaces.

Furthermore, it will also be interesting to consider a more general class of transfer operators associated to
“potential functions’, for which the largest eigenvalue may not be 1.
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2 2021.1.13 Meeting 2: Sarig L1, Transfer Operator; Definition, Basic
Properties & Examples

For a chaotic dynamical system T : S — S, such as ink diffusion in water, it is usually difficult to predict the
evolution of an individual trajectory, because “chaotic” means that two nearby points are driven apart rapidly
by the dynamics. However, it is often easier to study the evolution of mass densities for such systems. In the ink
example, even though the trajectory of any ink particle in water is intractable, the densities of all ink particles
in water will tend to become uniform.

The evolution of mass densities is given by the transfer operator.

2.1 Transfer Operator, Definition

Definition 2.1 (Nonsingular Transformation). Let (X, B, u) be a o-finite measure space, and T : X — X a
non-singular transformation, that is,

W(TT'E)=0 «— pu(E)=0, VEeB.

Remark 2.2. Note Sarig's definition of nonsingularity is stronger than that in Lasota-Mackey [LM94], where
only one direction of implication y(E) = 0 = p(T~'E) = 0 is required. Even the weaker version suffices to
guarantee existence of transfer operator. The o-finiteness of y is required for Radon-Nikodym Theorem.

One starts by distributing the ink particles in water according to density fdy, where f € L'(y), f > 0, and
poses the question what becomes of this density, after applying transformation T to each point x € X?

The mass of points landing in E is given by

f]lE(Tx)f(X)du(x) :J]].T—1Ede(X) where i is defined by py(E) = J fdu

E
= f Tedys o 7!
d 71
_ f e Ty,
dy
where the Radon-Nikodym derivative % exists and is unique because y; o T~ « p by nonsingularity of

T. Indeed, if y(E) =0, then p(T—'E) = 0 by nonsingularity of T, and hence pyo T=Y(E) = §,_, fdy = 0.
We may extend this procedure to all f € L'(p) and obtain the definition of the transfer operator T.

Definition 2.3 (Transfer Operator). The transfer operator T of a nonsingular transformation (T, X, B, ) is
defined to be

~ dyso T—1
Tl ()= L), > ———,
(k) = L (w) i
where ‘1‘1’377_1 is the Radon-Nikodym derivative of absolutely continuous signed measure y; o T~ " with respect
to p.

We conveniently characterize this abstract definition of the transfer operator via observables.

Proposition 2.4 (Characterization of Transfer Operator via Observables). For any f € L'(y), Tf is the unique
element in L' () such that

JQU(?f)dU = J(qo o T)fdu, Yeel®().
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Proof. First we show the above duality equation holds. Let ¢ € L*(p).

g T ~
J‘P(T’[)dll =J<Pduf§7udu by definition of T

:J<pduf o T=' by definition of Radon-Nikodym derivative
= f((p o T)dys  change variables

:J(goo T)fdp by definition of yy.

Next, we show that the duality equation characterizes Tt. Suppose hy, hy € L'(u) both satisfy the duality
equation. Let ¢ := sign(hy — h3), which is bounded and hence L. Then, for any ¢ € L% (), according to the

Characterization of T via Observables Proposition we have
J|h1 — hyldp = J(p(m — hy)dy = J(phzdp - fgohzdu = J(goo T)fdy — J((p o T)fdy=0.

It then follows that h1 = h, p-a.e. This shows the duality equation uniquely determines Tf and completes the
proof. O

Proposition 2.5 (Basic Properties of Transfer Operator). 1. The transfer operator Tisa positive bounded
linear operator on L' with induced operator norm || T ;1 = 1.

2 Forany f e L' (y) and g € L*(u), we have ?((g oT)f) = g(?f) p-a.e.
3. If T preserves y, then for any f € L' (), we have (?f) oT =E,[f|T7'B] u-ae.

Proof. 1. "positivity” means if f € L' has f > 0 ae., then T > 0 ae. To see this, fix any f € L' with f > 0
and let ¢ := ]1{?f<O}A Note ¢ is bounded and hence L*. Then, we have

0> f THdy = Jq)(?f)du — J((po T)fdy = 0.
{Tr<0}

This shows S{?f<0} ?fdu =0, and hence u{?f < 0} = 0; in other words, Tf > 0 a.e, as desired.

For boundedness, fix any f € L' and let ¢ := slgn(?f). Again, @ is bounded and hence L. Then, by Holder
Inequality, we have

1T = j o(TH)dy = j (o T)fdu < [@o Te|fln = |f]

It follows by definition of operator norm that | 7|, < 1.

For linearity, let f,g € L' and a,b € C. Then, af + bg € L'. By Characterization of T via Observables
Proposition [2.4] for any ¢ € L, we have

f(p(?(af + bg))du :J(<po T)(af + bg)dy = a f((p o T)fduy + bf((po T)gdy
=0J<p(?f)du + bJ(p(?g)du = J(p(u?f + b?g)du

By unique determination of the duality equation from Proposition ﬂ we conclude ?(af +bg) = alf+ b?g,
as desired.

To see H?HU =1, it remains to check ||/7\—||Lw > 1. For this, take any f € L' with f > 0. Then,

ITH = Jﬁqdu - J?fdu - Jm o T)fdu = |f],:.
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It follows again from the definition of operator norm (as a supremum) that ||/7\—||Lw > 1, and hence H?HU =1, as
desired. This completes the proof of 1.

For 2, fix any f € L' and g € L®. Note go T € L® by nonsingularity of T, and thus (g o T)f € L. Now, for
any @ € L, we have

f 0T (g0 )N = f (g0 T)(go T)dy = j ((pg) o T)fdu = j«pg)(?f)du.

It follows again from unique determination of the duality equation from Proposlttonthat ?((go nf) = g(?f)

a.e.

For 3, assume pyo T—' =y and take f e L', T-'E € T~'B. Then,
ng(?f) o Tdy :Jﬂrﬁ(?f) o Tdy = J(ﬂg o T)Y((TH o Tdy
= J(]lg(?f)) o Tdy = Jlg(?f)d T« change variable
:‘[]lg(?f)du by invariance Typ = p

= J(]lg o T)fdy by duality equation applied to ¢ = 1g € [*

=J fdu.
TE

We have thus verified, by definition of conditional expectation, that (?f)oT = E,[f|T~'B] y-ae. This completes
the proof of 3. O

2.2 Transfer Operator, Examples

Example 2.6 (Doubling Map). The doubling map T : [0,1] — [0,1], x — 2x mod 1, has transfer operator
given by

. f(x f x+1
THx) = w
For details, see Lectures 0 and 1.

Example 2.7 (Gauss Map). The Gauss map T : [0,1] — [0,1], x — 1 — 1], where -] is the floor function,
has transfer operator given by

T1(x) = Z (x—:n)2 f(x—:—n)‘

n=1

Indeed, fix any ¢ € L* and note

I
D8
‘ Si=
S}
x| =
|
3>
=
=
=
>

3
i
_EA

1
jo (0 TY () (x)dx
1

Nvar

1
dy  change variables y = "

y+n

3
i
e

Il
D18
TSN
ﬁ
S

i LT
y (y+n)2 “y+n 9

n=1

I
4 —_
S

where we have used Monotone Convergence to interchange the limit and integral. The assertion then follows
by unique determination of the duality equation from Proposition [2.4]

Example 2.8 (Piecewise Monotone Interval Map). Partition [0, 1] into finitely many subintervals /1, -, Iy.
Suppose T : [0, 1] — [0, 1] is such that each T|,, k =1,---, N, is injective and has a C" extension with non-
zero derivative to an e-neighborhood of /t. Denote by vi : T(lk) — I the inverse branch of T on subinterval
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I, e, vi = (T],)~". Then, the piecewise monotone interval map T has transfer operator given by

N
Tf= Z ]lT(/k)|\/,i|fO Vi .
k=1

This is only a slight generalization from piecewise expanding interval maps; another way of writing this transfer
operator is simply (T).

2.3 Duynamical Interpretations of Behaviors of T

Definition 2.9 (Weak Convergence). A sequence {f,} < L' is said to converge weakly to f € [ if
J@fndpﬁ Jgafdu, Vope l®.

Note weak convergence is weaker than convergence in L', in that convergence in L' implies weak convergence
by Holder Inequality.

Proposition 2.10 (Dynamical Interpretations of Convergence of 7" f). 11 T0f converges weakly in L' to
h§ fdy for some nonzero nonnegative f € L', then T has an acip with h being its density.

2 1T f converges weakly in L' to §fdu for all f € L', then pi is a mixing invariant probability.

3TN f converges (strongly) in L' to  fdy for some f € L', then for this particular f, we have
Contpo Tl [ oo 00— [ e [ pauf < 17— [ ralotolie, oot

Proof 1. Assume without loss of generality that § fdu = 1; otherwise, take f := ﬁ where §fdy = ||f|; # 0

because f is nonzero and nonnegative. Now the assumption becomes Tof converges weakly in L' to h. For
any @ € L, we have

f(phdu = HL‘LToofw?”Hfdu = nETOO f((p o T)(?”f)du by definition of weak convergence
- (oo Tonc = [ (T
It then follows that h = Th a.e. and hence
pyo T-(E) = J]lTAEhd,u = J(]LE o T)hdy = Jng(?h)dp = fﬂghdu = u(E), VEeB;
in other words, p, = T.pp is an a.c. invariant measure. To see it is a probability, note
1T = f|?"f|du: f?”fdu: Jm o T")fdy = ffdy =1,

Hence, the weak limit h has the same norm 1; in other words, p, is a probability.

2. Fixany fe L' By 1, g = is an invariant probability. For mixing, note for £, F € B, we have

WEAT™"F) =J151T*”Fd“ = fﬂg(h o T"dy = J(?"ﬂg)npdu

—>J‘(J]lgdu)]lpdu = p(E)u(F) by definition of weak convergence.
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3. Strong convergence in L' means H?”f — §fdull;n — 0. Fix ¢ € L* and note

U flgo T")du — deufwdu‘ = U(?”")wdu - J(J fdu)wdu'

U (T"f fdu (pdu‘ H?”f — deIJHU [@lli» by Hélder Inequality

O
Exercise 1.5.1. Show all eigenvalues of the transfer operator T have modulus less than or equal to 1.
Proof. Suppose T1 = Af for some A € C and nonzero f € L'. Since | Tf];1 <[], it follows that
Al = 1A = 1Tl < e,
and thus |A] < 1 because |f];+ # 0. O

Exercise 1.5.2. Show that

{acip densities of T} = {he L'(y): h >0, Th=h, Jhdu =1}

Proof. (<) If h is an acip density of T, then h e L'(u), h = 0 and { hdu = 1. Also, from invariance p, = Ty i,
we deduce, for any ¢ € [,

f(?h)godu =Jh(<ﬁ0 Tdy = JQDO Tduy, = f‘PdT*Uh = J‘Pdllh = thﬂdu,

and therefore Th = h ae.
(2)Ifhel hash =0, Th=hand {hdy =1, then

Up © T”(E) = f]quEhdu = J(]lg o T)hdy = J]lg(?h)du = f]].ghd/,l =un(E), VEEeB.
We thus conclude pj, is an acip. O

Exercise 1.5.3. If T has an acip, say 1, and 1 is a simple eigenvalue, i.e., dim{ge L'(4): Tg = g} =1,
then the acip p, is unique and ergodic.

Proof. If ug is another acip, then by Exercise 1.5.2, we have ?g = g. Since 1 is a simple eigenvalue, it follows
that g = h and hence iy, is the unique acip.

To see ergodicity, suppose the contrary. Then, 1, can be written as a nontrivial convex combination
tp = tvi + (1= 1t)w

where t € (0,1) and vy, v, are two distinct invariant probabilities. Since pj is a.c, it follows that both vy, v,

are a.c. as well. Then, their Radon-Nikodym derivatives % and dd—f are two linearly independent vectors in

{gel'(y): ?g = g}, contradicting the simplicity of eigenvalue 1. O
Exercise 1.5.4. If ? has an acip, say p, and 1 is a simple eigenvalue, and all other eigenvalues have
modulus strictly less than 1, then the acip py, is weak mixing, i.e.,

n—1

lim Z“’ “EnF)—p(E)u(F)| =0, VE FeB

n—+0oo N
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Exercise 1.5.5. If iy is a mixing invariant probability, then T has exactly one eigenvalue on the unit circle,
equal to 1, and this eigenvalue is simple.

Proof. Suppose A € C is an eigenvalue of T. We know already that |A] < 1, and now want to show that either
A=1Tor |\ <1

Since A is an eigenvalue, there is some nonzero fo € L' with ?’fo = Af.

It follows from the definition of mixing that
f(p(?kf)du = J((po T fdu L (pduffdu = J(p(f fduydy, VYeel® fel';

in other words, TXf converges weakly in L' to {fdu for any f € L'. In particular, by taking f = fy € L' and
¢ = sign(fy) € L, we have

Ml =2 [ Vd = [ ottt = [[o(Pdn =2 [ g [ o

Since fy is nonzero, it follows that ||[fo];1 > 0, and hence the convergence of sequence {X*|[fo[;1} implies either
A="Tor |\ <1 O
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3 2021.1.20 Meeting 3: Sarig L2, Quasi-compactness & Spectral Gap

To analyze the asymptotics of T7f for "nice” f, we study in this section some spectral properties of operator T.

Let (L, |- ||} be a Banach space, ie, L is a linear space with a norm | - | that induces a complete topology on
L. Let L: £ — L abounded linear operator; ‘bounded” means that the operator norm of L is finite

Lv
[L]| == sup 1L < 400.
orver (V]

Lemma 3.1 (Bounded/Continuous Linear Operators). A linear operator L : L — L on normed linear space L is
bounded if and only if it is continuous.

Proof. (=) Let {v,}, € L be a sequence converging to some v € L. Then,
[Avn = AVl = [A(va = V)| < [Alllva = v[| = 0.
(<) By definition of continuity, for e = 1 and at point 0 € L, there is some d > 0 for which

vi=lv=0l<d = JAv]=]Av—A0f <1.

Take any w € L. Then, ‘

H%”WH =0, and hence 1> HA (iW) H - m”AW

Tl [, which implies

., VwelLl.

1
lAw] < 5wl
We conclude [Af < 4. This completes the proof. O

Definition 3.2 (Eigenvalue, Eigenvector, Spectrum and Spectral Radius). We say A € C is an eigenvalue of L if
dnonzerove L: Lv=Av.

In this case, we say the nonzero vector v is an eigenvector corresponding to eigenvalue A.

We define the spectrum of L to be
spec(L) := {Ae C: (M — L) has no bounded inverse},

and the spectral radius of L to be
p(L) ;= sup{|z| : z € spec(L)}.

Note any eigenvalue of L is necessarily an element of the spectrum spec(L), and the converse holds when the
Banach space L is finite dimensional. If dim(£) = 400, however, there may be points in the spectrum spec(L)
which are not eigenvalues of L. For an explicit example, see http://www-users.math.umn.edu/ garrett/
m/fun/notes_2012-13/06b_examples_spectra.pdf,

The definition of the spectrum spec(L) seems to depend not only on the linear space £ but also on the norm
|- [l Under a different norm | - || on £, would the operator L have a different spectrum? That is, could there be
a value A € C for which (Al — L) has a bounded inverse with respect to norm | - | but (A/ — L) has no bounded
inverse with respect to norm | - ||'?

The answer (s n(ﬂ as long as the new norm || - |” still induces a complete topology on £ and makes L remain
a bounded operator, ie, ||L|" < 400. This is the case when || - |" is equivalent to | - |. Here is why.

4s there an example where changing the norm on a Banach space £ makes the space no longer complete and/or the linear operator
L no longer bounded, to the effect that the spectrum spec(L) also changes??? This is of course a rather pathological situation and not
the kind of things people usually do to obtain a spectral gap. Usually one tries to find a smaller invariant and closed subspace Ly S L
for L to act on. To prove spectral gap on Ly, changing of norm is allowed (convenient or necessary) but the new norm must satisfy some
domination property (e.g. equivalence to the old norm) in order to preserve the spectrum under the two norms.
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Proposition 3.3. For a bounded linear operator L : L — L on a Banach space L, we have

spec(L) = {Ae C: (Al — L) has no inverse}.

This is a consequence of the Open Mapping Theorem.

Theorem 3.4 (Open Mapping Theorem; [Con85] Chapter Il Theorem 121 ). If X, Y are Banach spaces and
L. X — Y is a bounded linear surjection, then L maps open sets into open sets.

Corollary 3.5. If L : L — L is an invertible bounded linear operator on Banach space L, then its inverse [~
is also a bounded linear operator.

Proof of Proposition[33] Note / and L are both bounded linear operators, and therefore so is (A/—L). If (Al—L)
has an inverse, then by the corollary to Open Mapping Theorem, its inverse is necessarily bounded. O

From Functional Analysis, we know

P = i, ¥/

Lo < 1L,

L] =inf</

for any equivalent norm || - || on Banach space L; cf. [Con85] Chapter VII Section 3.

In particular, 1 log|[L"| = log{/[L"] | logp(L), that is, for any € > 0, there is N(e) for which n > N(e)
implies 1 log |[L"] < € + log p(L), or equivalently,

n

IL"] < e™p(L)".
In other words, for any € > 0, we have

ILvl _ O(e"p(L)")  uniformly on £\{0}. 2

v

Proposition 3.6. /f Banach space L has a direct sum decomposition L = L1 @ L, into two closed L-invariant
linear subspaces L4, Ly, then the spectrum spec(L) of a bounded linear operator L : L — L can be written as

spec(L) = spec(L|z,) U spec(L|z,).

Proof. Since the linear subspaces £1 and £, are closed, they are also Banach spaces, and so the spectra of
restrictions L|z, and L|z, are defined. We claim any bounded linear operator A: £ — L on a Banach space £
has no (bounded) inverse if and only if at least one of A|z, : £L; — £, i = 1,2 has no (bounded) inverse. The
assertion then is a consequence of the claim applied to A = Al — L.

(=) f Alg, - L — L, i = 1,2 both have bounded inverses (Alz,)™": L; — L;, i = 1,2, then the inverse of
A: L — L is given by

A= (A) i+ Als) v, v=vdw, vel

(<) WOLOG suppose Alz, : £L1 — L4 has no (bounded) inverse. Then, Avy = Alz,vi = 0 for some vy €
L:\{0} < £\{0}, and hence A is not invertible, or equivalently, A has no (bounded) inverse. This proves the
claim and hence the proposition. O

3.1 Spectral Gap

Definition 3.7 (Spectral Gap). We say bounded linear operator L : £ — L on Banach space L has a spectral

gap if
L=AP+N,

where
1. P is a projection, i.e, idempotent P? = P. Also, dim(Im(P)) = 1;
2. N is a bounded linear operator on £ with p(N) < |A];
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3. PN =NP=0.

Note commutativity condition 3 implies that
[* = (AP + N)(AP + N) = ¥P? + ANP + APN + N* = ¥*P + N?,

and by induction,
"= A"+ N".

Condition 2 then yields
[L"v —A"Pv| = [N"v| = o(J]A]"), VveL,

where we have used (2) with € > 0 so small that p(N) + € < |A].

Hence, if L has a spectral gap, then

_ n—-400
ATy 2T Py
exp.

(@
Im( P) | P(L=[n|

Figure 5: Left shows the one-dimensional Im(P) in Banach space £. Right shows the spectral gap in the
complex plane between the dominant eigenvalue A and the rest spec(L)\{A} = spec(N) inside a strictly smaller
disk.

Proposition 3.8 (Explanation of the name “spectral gap”; Ex 2.1). If L has a spectral gap, then A is a simple
eigenvalue and there is a “gap” yy > 0 such that

spec(L\{A} < {lz] < e7"[A[}.
Proof. To see A is an eigenvalue, for which every nonzero v € Im(P) is a corresponding eigenvector, note
L(Pv) = (AP + N)(Pv) = AP?v + NPv = A(Pv), VvedL.

Since dim(Im(P)) = 1 by assumption, it follows that there are such v € Im(P) and all of them are eigenvectors
of L corresponding to A.

To see A is simple, we show every eigenvector corresponding to A belongs to the one-dimensional subspace
Im(P). Indeed, if Lv = Av, then

AT " = v —— Py,
n—+00

which implies that v = Pv € Im(P). Together with the above, we conclude simplicity of A via

{veL:Lv=2Av}=Im(P).

Now suppose z € C has |z| > p(N) and z # A
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(a) The equation (z/—L)v = w has a solution v € Im(P) if and only if w € Im(P); in this case, v = (z—A) " 'w
is the unique solution in Im(P).

Indeed, write v € Im(P) as v = PV’ for some v/ € £, and the equation becomes
w=(zI=L)v=(zI =L)PV = 2PV — (AP + N)PV' = 2PV — APV = (z = )PV = (z — A)v,

which has a solution if and only if w € Im(P); in this case, v = (z — A)~'w is the unique solution in
Im(P), as desired.

(b) The same equation (z/ — L)v = w always has a unique solution in Ker(P), given by v = (z/ — N)~'w,
Indeed, for v € Ker(P), the equation becomes
w=(zI = L)v=2v— (AP + N)v = zv — APv — Nv = (zI = N)v.

But |z| > p(N) implies that (z/ — N) has a bounded inverse, and so v = (z/ — N)~'

solution in Ker(P).
(c) For any v e L, we have Pv e Im(P) and (I — P)v € Ker(P).
Indeed, P(/ — P)v = P(v— Pv) = Pv — P?v = 0.

w is the unique

(d) (z/ — L) has a bounded inverse on L, given by
(Zl=D)"=GZ=N)TP+ (2l =N)T(I = P).
Note P = A~"(L — N) is a bounded linear operator, and (/ — P) is as well because
[ =P = lv=Pvl < v+ IPvii=(+1PDIv]
It follows that the expression above indeed defines a boundeﬂ linear operator on L.
To see it is the inverse of (z/ — L), we show
v=(z=N)""Pw+ (zI = N)"'(I - P)w

is the unique solution in £ to equation (z/ — L)v = w.

Write w = Pw + (I — P)w. On one hand, v; = (z— A)~"Pw is the unique solution in Im(P) to equation
(zI — L)vy = Pw, by (a). On the other hand, v, = (z/ — N)~'(/ — P)w is the unique solution in £ to
equation (zI — L)v, = (I — P)w, by (b). Therefore, v = vy + v» solves equation

(zl=Lyv=0zl-LDv+ @zl -LDv=Pw+(—P)w=w.

For uniqueness, suppose v/ € L is another solution, that is,
(zI = L)V =w= (2] - L)v.

Applying operator P to both sides of the equality yields

ZPV — P(AP + N}V = P(zl — L)V = Pw = P(zl — L)v = zPv — P(AP + N)v
and so

(z—=ANPV =(z—=A)Pv,
which implies
PV = Pv.

Now (z/—L)v' = (zI—L)v becomes zv—APV' — NV’ = zv—APv—Nv, and hence (z/—N)

v = (zI=N)v.
By invertibility of (z/ — N), we conclude uniqueness v/ = v. This completes the proof of (d).

®Another way to prove boundness is by Open Mapping Theorem [Con85] Chapter I1l Theorem 12.1: If X and Y are Banach spaces and
A: X — Y is a continuous linear surjection, then A is an open map.
Indeed, once we prove (zI — L) is invertible on L (it is also bounded/continuous because [ and L are), it then follows from the Open
Mapping Theorem that (z/ — L) is an open map, and hence its inverse (z/ — L)~ is continuous/bounded.

27



To find yp, note (3d) implies that any z € C with |z| > p(N) and z % A cannot belong to the spectrum spec(L).
In particular,

spec(D\{A} < {Iz] < p(N)}.
Hence, by taking
0 < yo < log|A| —log p(N),

we have found the required gap. O
Remark 3.9. Sarig's definition of spectral gap is less intuitive than Climenhagas’s, but allows any dominant

eigenvalue A, and requires that it be the unique one on the circle passing through it, and that it be simple.

In the example of the doubling map T : x — 2x mod 1, we considered the action of its transfer operator 7 on
the space Lip of Lipschitz functions. We saw pictorially that T Lip — Lip has a spectral gap. Now we can
verify it under Sarig’s definition by writing

T=1P+N,

where

Py = fwdx, Ny =T =T(— f(pdx).

1. Clearly, P = P? is idempotent and Im(P) = C1 is the one-dimensional (invariant) eigenspace of T: Lip —
Lip corresponding to the dominant eigenvalue A = 1. Also, H is invariant because

f[p =0 = J?[deeb = J(w o T)idleb = J[deeb -0,
and so ?’(/—/) € H. Again, C1 is closed because it has finite dimension 1, and H = Im(N) is closed for being
the image of a bounded linear operator with finite codimension.

2. We showed that [N¢/|ip = |T¢lip < 3dlip = 3|¢lup. Since |- |up and |- Jup = | - Jup + || - 1= are
equivalent norms on H, it follows that N is a bounded linear operator on H, with spectral radius
1
pIN) < [Nl < 5 < 1= 1]

3. It is easy to verify that

PNy = f(?(w - dex))dx = fﬂpdx - Jg[/dx = Jm o T)idx — Jg[/dx =0, VyelLip,

and

NPy = ?(J Ydx — J(J Ydx)dx) = T0=0, Ve Lip.

3.2 Quasi-compactness

Definition 3.10 (Quasi-compactness). A bounded linear operator L : £ — £ on a Banach space L is called
quasi-compact if there are a direct sum decomposition £ = F @ H and a constant p € (0, p(L)) such that

1. F and H are closed and L-invariant, e, L(F) € F and L(H) < H,
2. dim(F) < +o0 and every eigenvalue A of L|F : F — F has modulus |A| > p;

3. p(Llw) < p.

28



U
v

Figure 6: Quasi-compactness is weaker than the spectral gap in that it allows multiple (finitely many) eigen-
values of the same largest modulus in the complex plane.

Remark 3.11 (Quasi-compactness is weaker than spectral gap). If L has a spectral gap, then L is quasi-compact.
Indeed, suppose L has a spectral gap. Then, decomposition

L=Im(P)®Im(/ - P)

and any constant p € (p(N), |A|) satisfy the requirement in the definition of quasi-compactness.

Note any v € £ can be written as v = Pv+v—Pv = Pv+(/—P)v, where Pv e Im(P) and (I—P)v € Im(/—P).
To see the sum is direct, suppose v € Im(P) n Im(/ — P). Then, v = Pv; = (I — P)v, for some v1, v, € L, and

hence
v =Pvi = P’y = P(Pv) = Pv=P(l— P)v, = Pv, — Py, = 0.

1. Im(P) is closed because dim(Im(P)) = 1 and every finite-dimensional linear subspace is closed. It is
also L-invariant because for any Pv € Im(P), we have

L(Pv) = (AP + N)Pv = AP?v + NPv = APv € Im(P).

Im(/ — P) is closed because (/ — P) = (I—A~"(L — N)) is a bounded linear operator and Im(/ — P) has
codimension codim(Im(/—P)) = dim(l — P) = 1’| It is also L-invariant because for any v—Pv € Im(/—P),

we have
L(v—Pv)=Lv—LPv=Lv—Plv=(I-P)(Lv) elm(/l - P),

where we have used commutativity

LP = (AP + N)P = AP? + NP = AP? = AP* + PN = P(AP + N) = PL.

2. dim(Im(P)) =1 < +00 and L|jn(py has exactly one eigenvalue A, with [A| > p by construction.

3. By (3d) in Proposition 3:8] we have

spec(Llim—p)) S spec(O\{A} < {lz| < p(N)},

and hence
P(Llimi=py) < p(N) < p.

Hence, spectral gap is a special case of the weaker notion of quasi-compactness.

Proposition 3.12 (Quasi-compactness and Spectral Gap; Ex 22). If L . L — L is a quasi-compact linear
operator on Banach space L, L has a unique eigenvalue A on the circle {z € C : |z| = p(L)}, and X is simple,
then L has a spectral gap.

®According to Pietro Majer's answer https : //mathoverflow.net/q/30881| it is a consequence of the Open Mapping Theorem that
a linear subspace in a Banach space, of finite codimension, and which is the image of a Banach space via a linear bounded operator, is
closed.
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Proof. Let nonzero v; € L be an eigenvector corresponding to A. Then, v; € F and decompose F into

F = span(vi) ® H”,
where H” is a finite-dimensional linear subspace with L(H") < H” and p(L|y») < || because A is the only
eigenvalue on the circle {z € C: |z| = p(L)} and because A is simple.

Put
H =H'®H.

Then, H' is a closed linear subspace with L(H") € H" and p(L|x/) < |A]. Define
P:=m, N:=Lom,

where 71 : £ — span(vy) is the projection to span(vy) and i, : L — H' is the projection to H'.

Note any v € L can be uniquely written as v = m1(v) + m(v) = avi + v, for some scalar @ and vector v, € H'.
So
Lv="L(av +v) =Aavy + Lv, = APv+ (Lom)v, VveL.

This shows
L=AP+ N.

Now let us check this decomposition satisfies the three conditions of spectral gap:
1. P = is a projection, that is, P? = 717 = 711 = P and Im(P) = Im(;11) = span(v1), so dim(Im(P)) = 1;

2. N =Lom is a bounded linear operator with [N|| = |[L o m|| < |L]| and spectral radius
p(N) = p(Lom) = p(Ll) < Al

3. PNv = m(L(mv)) = 0 for any v € £ because mv € H' implies L(mv) € H' by invariance and hence
PNv = 0 because the sum is direct. Similarly, NPv = L(m(sr1v)) = 0 for any v € L. This shows
PN = NP =0.

We have shown that L has a spectral gap. O

Proposition 3.13 (Ex 23). Let T be the transfer operator of a nonsingular map (T, X, B, y). Suppose there is
a linear subspace £ < L'(u) with norm || - |z = | - ||;1 such that

1. (L, |- |z) is a Banach space;
2 T(L) S L
3T:L>Lis quasi-compact.

If T has mixing acip density h € L, then T has a spectral gap on L with A =1 and Pf = h§fdp.

Proof. Since T has mixing acip, it follows from Exercise 1.5.5 that T has exactly one eigenvalue on the unit
circle, equal to 1, and 1 is simple. Together with quasi-compactness of T on L, it follows from Proposition
that T has a spectral gap on £ with A = 1.

To verify the action of projection Pf = h{fdy, we note P?f = P(h§fdy) = h§(h§fdu)dy = h§fdy = Pf
because h is a density. Also, Im(P) = span(h) has one dimension. But this only verifies that this action of P
is consistent with the requirements.

To determine the action of projection P in decomposition T = AP + N, we know from requirement Im(P) =
{(fell: Tf = f} = span(h) that Pf = a(f)h for some scalar a(f). This functional a : L' — C must
satisfy a(h) = 1 and must be a bounded linear functional. The integral functional a(f) = §fdu of course
satisfies this requirement, but there may be others that are also admissible. Question: Is P unique? Or is the
representation L = AP + N unique??

why is it important that | - |z = | - ||1?7? O
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4 2021.1.27 Meeting 4: Sarig L2 continued, Application of Hennion’s
Theorem in Continued Fractions

4.1 Sufficient Conditions for Quasi-compactness; Hennion's Theorem

The transfer operator T generally does not have a spectral gap on L'. So we need to find a smaller T-invariant
Banach subspace £ < L' with norm || - |z = || - |+ such that T|z : £ — L has a spectral gap. This will give
information on T"f for f € L.

Theorem 4.1 (Doeblin-Fortet; lonescu-Tulcea-Marinescu; Hennion). Suppose (L, || - ||) is a Banach space and
L: L — L is a bounded linear operator with spectral radius p(L). Assume there exists a semi-norm | - || on L
such that

1. Continuity: L — R, v — |v|’ is a continuous function;

2. Precompactness: for any sequence {f,} < L, if sup |f,| < +oo, then there is a subsequence ny and
g € L such that

|Lf, — g 2255 0,

3. Boundedness:
IM>0Vfel: ||Lf| <M]|f|;

4. Doeblin-Fortet Inequality: there are k =1, r € (0, p(L)), R > 0 such that
[LFl < AUFL+ RIF), Ve L

Then, L: L — L is quasi-compact.

We will prove this theorem in the next lecture. In this lecture, we present an application to continued fractions.

4.2  Application to Continued Fractions

Every irrational number x € [0, T\Q has a unique continued fraction representation as

1
X=————— a(x)eN
aq (X) + FOreEs
We will be interested in the asymptotic distribution of a,(x) for large n.

Theorem 4.2 (Gauss; Kuzmin; Léwy). For every natural number N,

exp. /I ln (1 + 1N)

Leb{x € [0, 1] : ap41(x) = N} .
n—too N2y, (1 + L)

Proof. We will use the Gauss map

T:10,1] — [0, 1], )(»—>1 mod 1.
X

Note for any x € [0, 1T\Q, we have

1
Tx = - 1= - | =
X = mod a1(x) + o) T mod PR

and induction gives




[t then follows that

and therefore
Leb{x € [0, T\Q : ap41(x) = N} = Jﬂ(‘#ﬂ) o T"(x)dx = J‘(/Y\'M)JI(LW - fV (?M)(x)dx.

GOAL: Find a Banach space £ = L' on which T is quasi-compact and |- [z = || - [

Then, the fact that Gauss map T has a mixing acip density

1 1
M) = 374«

(we will prove this fact in the next lecture), together with Exercise 2.3, yields that T has a spectral gap on L
with A =1and Pf = h§fdy for f € L. This implies

exp. in L
B

M =T P1=h.

n——+00

But |||z =] and hence
[T =Bl < |71 = Al —2 0.
n—+00

We thus conclude

1 1 1
oA e, N N1 1 Wn(1+
Leb 0,1 e =N} = ") (x)dx —— h(x)dx = — dx = —
eblo < 0.11Q () = N = | (e 2 [ oo = | o= &
as required.
To accomplish the goal, we follow two steps.
Step I: Find the Banach space L. Take linear space
L = {Lipschitz functions f : [0,1] - C} < L,
normed by
. . ) =1y
I = 71 + g Lip(r) = sup "EI =L
X#Y |X y|
Then, (L, - ) is a Banach space. For this, take a Cauchy sequence {f,}, < L, and we show it converges
to some f € £. Note Cauchy in £ implies Cauchy in L* and hence Cauchy in L'. Since L' is complete, the
sequence {f,}, converges in ['-norm to some f € L'. Check completeness, namely convergence in | - |-norm.

Lemma 4.3 (Exercise 2.4). 1. Iff.ge L, then |f-g| < |flllgll,

2 Ifa =1, then

3.
<2

1
(a+x)?

a+x

3 Iffel anda =1, then Hf (4)

<l
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Proof. 1.
1F(x)g(x) — f(y)g(y)]

If =gl =[f- gl +Lip(f - g) = max|f(x)g(x)[ + sup

x#y lx =yl
<max | (x)| max|g(x)| + sup [f(x)g(x) — f(X)g(y)X'f Z|<x)g<y> —f(y)g(y)|
<[ fle J+§:2|f(X)II|9X(X_)g—|9(y)I sup Ig(y)l|i(i)g—| fy)l
1) = fy)l

+ ijlg(y)lsur)

g
<Iflle=llgli= +m;ﬂxf(X)|SUP|()|()| 2 x—y
x#y

X#Y ‘
=[flli=llglli=e + [ Lip(g) + [gllie=Lip(f)
<[flle= (gl + Lip(g)) + (gl + Lip(g))Lip(f) = [If[[lg]

2. Note x — (U—lix)z is decreasing and hence realizes maximum value at x = 0 on [0, 1], so max, (u-‘:ix)z = %
Also, (x, y) — % has no critical points on [0, 1]? and hence achieves maximum at boundaries, namely,
when x = y = 0, the maximal value is % Now we compute
1 (qux)2 o (a+g)2 1 1 |(G + g)Z - (G + X)2|
max 5 tSup—————F—— = — +sup > >
(@+x)2 (ot x)? ey =yl a? sy =yl (@ +x)*(a +y)
0 bty 123
a2 oy (a+x)2a+y)?  a? @ T a?
3. Note Lip(+—=) = su i Y —t—— = 1 because a =1 > 0. Now we compute
: Plas Pxsty =yl Pty Torxllowol ~ P
f ! = f T + Li (f(L)) < sup |[f(x)] + Lip(f)Lip( ! )
a+x N a+x P a+ x = Xp P pa—l—x
1
=|f]i + Lip(f ) < |f|li= + Lip(f)  because a = 1.
This completes the proof of the three estimates in Lemma [43] O
Recall from Exercise 1.3 that the transfer operator T of the Gauss map T is given by
0
~ 1 1
Tf(x) = f .
() (;(a—&-x)z (a—i—x)
By Lemma [43] we have
& 1 1
ITf f < f
Il = Z a+ x)? (a+x ' (a+ x)? (a—l—x)” H I
a=1 a=1 a=
This shows ?’([,) c L and HTH Yo’y = hence T is a bounded linear operator on Banach space L.
Step II: Verify conditions of Hennion’s Theorem [4.1] for (semi-)norm |- |/ = || - | ;» on Banach space (L, | - |).
1. Continuity. Let sequence {f,}, € L converge in |-||-norm to some f € L. Then, |[f,—f|i= < |f,—f]| = 0

and hence the sequence {f,}, converges to f in L'-norm. Therefore,

1all" = 1fallr = M0 = 1]

2. Precompactness. Let sequence {f,}, < L be such that sup, |f,]| < 4+0o0. Then, on one hand, we
have sup, |fa]i= < 400 and hence {f,}, is uniformly bounded; on the other hand, we also have
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sup, Lip(f,) < 400 and hence {f,}, is uniformly equicontinuous. According to Arzela-Ascoli Theorem,
there is a subsequence {f,, }¢ uniformly convergent to some function f : [0, 1] — C with

Lip(f) < supLip(f,) < +o0.

This shows f e L. Uniform convergence is equivalent to convergence in L*, which implies convergence
in L', and hence

[fo, = fl =250,
Since T is a bounded operator on L7, it follows that
| Thy = TH =Tt — T =22 0.

Note Tf € £ because f € £ and T(L) < L.

. Boundedness. R R
ITA" =T < Il =1

. Doeblin-Fortet Inequality. We first prove a lemma.

Lemma 4.4 (Exercise 25). For each a € N, define

1
Vo(x) = ., x€[0,1
W)= . xel0]
their compositions
Vay ooy = Va, O+ 0 Vg,.
(a) Forany fe L,
0

ne /

Tf = Z \vm’,,,,g”\fo Vay e ay-
ay, - ,a,=1

(b) There are constants C > 0 and 6 € (0,1) such that for any string a := ay---a, of any length
n =1, we have
Va(¥) = va(y)| < CO"[x —yl.

(c) There is a constant H > 1 such that for any x, y € [0,1] and any string a .= a1 - - - a, of any length
n =1, we have
()
!

va(y)

1%

I~

1‘<H|xg|.

(d) There is another constant G > 1 such that for any x € [0,1] and any string a := ay---a, of any
length n =1, we have

G~ 'Leb(v,[0,1)) < |V, (x)| < GLeb(v,[0,1)).

(e) v4[0,1) are non-overlapping sub-intervals of [0, 1).
Proof of (a). Base Case n + 1.

[e¢] [e.¢]

D e OOl (ve, (X)) =

Cl1=1 01=1

-1
(ay + x)?

f(m 1+X> = Tf(x).
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Assume for n and show for n + 1.

o
) =T (TH) = D0 Vo, T 0 vy 0, (X)
ay,-,a,=1
©
= > Ve, orea  CIVA, - (Voo O] v, (0]
ap,-,a,=1
. e o)
oy (@41 + Vay 0, (X))? Ani1 + Vay o a, (X)
n+1=
[

= D0 e (oo CIVE, (o e, ()] v, ()]

a,ee,ap =1
|Vél,,+1 (Vay - ay CONF Va0, (X))

0

= D Warea G 0 Ve, (%)

01.-".0n+1=1

This completes the induction and proves point (a).
Proof of (b). and the rest..

Now we use the lemma to verify Doeblin-Fortet Inequality. First, we estimate Lip(7"f).
(T (x) - )| —2|v IICACHEAMIICAM)
<Z|\v N (va () = Vo) (va ()] + [1va()IF (va () = [va()IF (va(y))]
—Z 15001 = Ve ()I] - 1F(va ()] + Vo)l - [F(va(x)) = F(va())]
<; Vo (x) = va()] - [F(va())] + 1Va(W)] - [F (va()) = F(va(t)]

<3 )2

Wl + 1l L) = o)
For any Lipschitz function f : / — C on interval J, we have the diameter of its range bounded by

Ve(y)

diam(f(J)) < Lip(f)Leb(J),

and the mean value is realized at some point xp € J

Leb f|f )|dt = f(xo)dt € ().

It then follows that ’
1091 < 3 L IF(D)|dt + Lip(f)Leb()),  Vxe J
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We continue the estimates for Llp(?”f).
Vo (X)
va(y)

<) Gleb(v,[0,1)) - Hlx — y| - <WJ o £ (£)|dt + L‘Lp(f)Leb(vu[O,T))>

(T () = (TN < D V()] - - 1\ OO+ [Vl - Lip(F)va(x) = va(y)]

+ Gleb(v4[0, 1)) - Lip(f)CO"|x — y]
= GHlx - y| J o [F(t)]dt + ) GLeb(v4[0, 1)) - Hx — y]Lip(f)Leb(v4[0, 1))

+ > GLeb(v,[0,1)) - Lip(f)CO"|x — y]

a
éz GHI|x — g\f o |f(t)|dt +Z Gleb(v,[0,1)) - H|x — y|Lip(f)CO"
a Yol a

+ ) GLeb(v,[0, 1)) - Lip(5) CO"|x — y],

where in the last inequality we have used
Leb(v4[0,1)) = |v4(0) — va(1)| < CO"|0 — 1] = CO".

But v,[0, 1) are non-overlapping subintervals of [0, 1), and so 3}, Leb(v4[0, 1)) < 1. We continue.

(T"F)(x) = (T"F)(y)] <GH|x — g|J 1£(1)|dt + GH|x — y|Lip(f)CE” + GLip(f)CO"|x — y|
UQVQ[OM
<|x — y| (GH|f|» + (H + 1)GLip(£)CO").

[t follows that R
Lip(T"f) < GH|f||p + (H+1)GCO Lip(f).

Second, we estimate H?nf”pm Since T"f is Lipschitz on interval [0, 1], it follows that, for any x € [0, 1],
~ 1 LN ~ LN ~ ~ ~
1T (x)| < WL | T7f(t)|dt+Lip(T"f)Leb[0,1] = fo [T f(t)|dt+Lip(T"f) = | T"f| ;1 +Lip(T"F),
and hence
1T e < | T"Flir + Lip(T™F) < |[F]r + Lip(T"F) < (GH + D|[f| 1 + (H + 1)GCO"Lip(f).
Putting the two estimates for L'Lp(?”f) and || ?”fHLoo together, we obtain
1T = | T"f|l i + Lip(T"F) < QGH + D|f|/ + 2(H + 1)GCO"Lip(f).
By slightly increasing 6 to r € (6, 1), we absorb the multiplicative constant
2(H+1)GCo" < r*

for any sufficiently large k.

We have verified the Doeblin-Fortet Inequality, and hence all conditions for Hennion's Theorem [4.1] are
met. The proof of Theorem [£2]is complete. O
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5 2021.2.3 - 3.3 Meetings 5 — 8: Sarig A3, Hennion’s Theorem

In this meeting we will start the proof of Hennion's Theorem.

Theorem 5.1 (Hennion). Suppose (L, | - |) is a Banach space and L : L — L is a bounded linear operator
with spectral radius p(L). Assume there exists a semi-norm | - || on L such that

1. Continuity: L — R, v — |v|’ is a continuous function;

2. Precompactness: for any sequence {f,} < L, if sup |f,| < +o0, then there is a subsequence ny and
g € L such that

|Lfy, —g]" =55 0;

3. Boundedness:
IM>0,Vfel: |Lf|' <M|f|;

4. Doeblin-Fortet Inequality: there are k =1, r € (0, p(L)), R > 0 such that
L1 < UL+ R, Ve L

Then, L : L — L is quasi-compact.

Proof of Hennion's Theorem.

5.1 Reduction to kK = 1 Case.

It suffices to prove the case k = 1. Indeed, assume k = 1 case holds. Take L for which the Doeblin-Fortet
Inequality holds for some k = 2. We show this implies L is quasi-compact.

Note for bounded linear operator L := L and semi-norm |- |/, we easily verify the four conditions for Hennion's
Theorem and so the kK = 1 case yields that [ is quasi-compact.

Since [ = (¥ is quasi-compact, it follows that (i) spec(L¥) contains only finitely many points z € C with
|z| = p(LX), (ii) every z € spec(L¥) with |z| = p(L¥) is an eigenvalue of L* with finite multiplicity, and (iii)
points in spec(L¥) do not accumulate to the circle {|z| = p(L*)}.

By Spectral Mapping TheorerTﬂ we have

spec(LX) = (spec(L))*.

Now, (i) implies that spec(L) also contains finitely many points z € C with |z| = p(L). (ii) implies that every

z € spec(L) with |z] = p(L) is an eigenvalue of L with finite multiplicity; indeed, take any such z. Then,

75 € (spec(L))* = spec(LX) with |2K| = |z|* = (p(L))* = p(L¥). According to (ii), z* is an eigenvalue of [*

with finite multiplicity; in other words, there is some v € £\{0} such that [¥v = ZFv.

Fix p e (r, p(L)) and define closed annulus in the complex plane
Alp.p(L)) :={ze C:p<|z] < p(L)}.

Lemma 5.2. Under the hypotheses of Hennion's Theorem, for any z € A(p, p(L)), we have

(i) K(2) := Uy ker(zI — L)* is a finite-dimensional linear subspace, and 1(z) := (N, Im(zl — L)" is a
closed linear subspace.

(i) K(2),1(z) are both L-invariant and B = K(z) ® /(z).

(iti) (zI = L) : 1(z) — I(z) is a bijection with bounded inverse.

’Spectral Mapping Theorem [Con85] Theorem VI1.4.10. If a € A and f € Hol(a), then

spec(f(a)) = f(spec(a)).
Here, A is the Banach algebra B(L) and f : z — z*.
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(iv) {Ae Alp, p(L)) : K(A) # {0}} is finite and non-empty.
Note (i) and (ii) imply, according to Proposition that for any z € A(p, p(L)), we have

spec(L) = spec(L|k(,)) v spec(L|))-

But (iii) implies z ¢ spec(L|;.,)). If z € spec(L) n A(p, p(L)), then z must belong to spec(L|k(,)) and hence
K(z) # {0}. This implies

spec(L) n Alp, p(L)) < {A € Alp, p(L) : K(2) # {0}).

By (iv), we conclude the intersection spec(L) n A(p, p(L)) is finite, and it must be nonempty too by definition
of spectral radius p(L). Write

spec(L) n A(p, p(L)) = {1, -+ ).

If z is not an eigenvalue, then (z/ — L) is invertible, and so are its positive powers (z/ — L)¢, ¢ > 1. Therefore,
K(z) = {0}, and so B = I(z). But (iii) then implies (z/ — L) has a bounded inverse on /(z) = B, and hence
z ¢ spec(L) nA(p, p(L)). We conclude each element A; in the finite nonempty intersection spec(L) nA(p, p(L))
is an eigenvalue of L; moreover, each A; has finite geometric multiplicity by (i).

By forming

= @K(A,-), He=[)1(A)

i=1
we will show (v) F is a direct sum, dim(F) < +oo, L(F) € F, and the eigenvalues of L|r are exactly Ay, - -+, A
(vi) H is closed, L(H) € H, and B = F @ H; (vii) p(L|y) < p. It will then follow by definition that L is
quasi-compact.
5.2 Conditional Closure & Riesz Lemmas

To prove Lemma [5.2] we first prove the following result, which will be our main technical tool to utilize the
Doeblin-Fortet Inequality.

Lemma 5.3 (Conditional Closure Lemma). Under the hypotheses of Hennion’s Theorem, fix z € C with |z| > r,
and let {g,}, S B be a sequence such that each equation

g, = (zI = Df, 3)

has a solution f, € B. If ||gh, — g| — 0 as n — +o0 and sup, |f,| < 400, then the sequence {f,}, has a
subsequence in B converging to a solution f € B to the limiting equation

g = (z - L)f.

Proof of Lemma[b3 From equation (3), we have
gn = gm = (21 = D)fy = (21 = Dty = 2(Fy — fn)) = L(fa = ), (4)
and hence
2] o = Tl = llgn = gm + LUw = fu) | < |gn = gl + rllfa = full + RIFn = fa],
by Doeblin-Fortet Inequality (k = 1). Rearranging terms yields

lgn = gul + £ — mel
|z| —r

“fn - me <

First note
m,n——+0o0 O

lgn = gnll < g0 =gl + |9 — gul
To deal with ||f, — f,]’, we start again from (4) and deduce

Z| - |[Th m 9n — Gm n— Lim
2| o =l < | |+ Lty — LEw]
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by Triangle Inequality for the semi-norm | - ||". Since sup, |f,| < +o0, there is a subsequence {Lf,, }, such
that |Lf,, — h]’ £24%, 0 for some h e B by Precompactness. Thus,

lgn, = gmll + [Lfa, = BI" + |h = Ly |" kisto0

7]

0.

ank - fm/Hl <

Plugging this into estimate (B), we obtain Cauchyness

k,l—400

Hf”k - fm[H 0,

and so, by completeness of B, there is some f € B with
k—+
[foe = ] =2 0.
Since (z/ — L) is continuous, it follows that

g= lim g, = lim (zI=0L)f,, =(zI=L) lim f, = (zI—-L)f

k—+00 k— 400 k— 400
This completes the proof of Conditional Closure Lemma. O
Before proving Lemma [5.2] we prove another separation result for general normed vector spaces.

Lemma 5.4 (Riesz Lemma). Let (V,||-||) be a normed vector space and U < V a linear subspace with U # V.
Then, for any r € (0,1), there is v e V with |v| =1 and dist(v, U) > t.

Proof of Riesz Lemma. Fix any vy € V\U. By definition of dist(vy, U) = inf,ey [vo — u], there is some ug € U
with '
dist(v, U) < |vo — ug| < ?dlst(vo, U).

Note that for any v € U, we have

‘ o —Uo u ~vo = (uo + v)| dist(vo, U)
Ivo — woll  [[vo — ol o —uol = ldist(v, U)
Hence, v := H&g:zg“ is the desired vector. This completes the proof fo Riesz Lemma. O

Remark 5.5. As Tiago remarked on 2021.2.3, Riesz Lemma is commonly used to produce a sequence of vectors
on the unit sphere that has no convergent subsequence, leading to non-compactness of the unit ball in an
infinite-dimensional Banach space, for instance. We will see it in action many times in the proof of Hennion’s
Theorem.

We are now ready to prove Lemma 7]

53 Step |
Proof of Lemma 5.2 Step I. If |z| > r, then
1. ker(zl — L)" is finite-dimensional for all £ > 1.
2. Im(zl — )" is closed for all £ > 0.
3. There exists ¢ > 1 such that K(z) = ker(z/ — L) and /(z) = Im(z/ — L)*.

Proof of Step |. Fix z € C with |z| > r. Set Ky := ker(z/ — L)*. We induct on ¢ > 1 to show dim(Ky) < +o0
forall €= 1.

Base Case ¢ = 1. For a contradiction, suppose dim(Kj) = 4o00. Take any f1 € Ky with |[fi]] = 1. Since
Sy :=span(fi) € Kj is one-dimensional, it is closed and is not the entire space Kj, Riesz Lemma applied with
t= % yields f, € Ky with ||z = 1 and dist(f2, S1) = % Continuing this way, we obtain a sequence {f,}, < Kj

such that :

anH:1 and an_me>§, Yn # m.
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Then, sup, |fa] = 1 < 400 and (z/ — L)f, = 0 because f, € K; = ker(z/ — L). Condltional Closure Lemma
then yields a convergent subsequence of {f,},, contradicting the fact that |f, — f,| = 3 for all n # m. We thus
conclude the base case that dim(K7) < +c0.

Assume ¢, show ¢ + 1. Again, for a contradiction, suppose dim(Kyy1) = +0oo. Then, by Riesz Lemma, we can
construct a sequence {f,}, S Ky1 such that

HfHH =1 and ”f _me 5 Vn;ém.

But f, € Kpyq = ker(z/ — L)**" implies that
gn = (zI = D)f, e ker(zl — L) = Ky,
and
lgnll < |2 - [fall + L] - [£all = |2] + |IL]-

By Induction Hypothesis, dim(Ky) < 400, and hence the unit ball in Ky is compact; in particular, the sequence
{gn}n has a convergent subsequence {g,, }x. Conditional Closure Lemma then yields a convergent subsequence
{fn, }1 contradicting the fact that [f, — f,| > 7 for all n # m. We thus conclude the induction step that
dim(Kp41) < +00. This completes the induction and shows dim(Ky) < +oo for all ¢ = 1.

To see lp = Im(z/ — L)e is closed for all £ = 1. We induct on ¢ = 0, where (z/ — L)O =/

Base Case ¢ = 0. Clearly Iy = B is closed.

Assume ¢, show ¢ + 1. Take a sequence {g,}, € lp4+1, and assume g, %» g for some g € B. We need to
show g € lp41.

Since g, € lpy1 = (zI = L)lp, we may write

= (zI = L)f},  for some f] € .

Gn

Since Kj is finite dimensional and /; is closed by Induction Hypothesis, it follows that the intersection Ky N /y
is also closed and ﬁnite—dimensionalﬂ and hence there is some h € Ki n [, such that

|f! — h| = dist(f), Ky n lp) = min |l —H|.
h'eky Al
Take f, := f] — h so that
g, = (zI=L)f, and |f,] = dist(f,, Ks 0 lp).
CLAIM 1: sup, |fa]| < 4+00. Otherwise, there exists a subsequence {f,, }x with |f,,| 2t ®, oo, Then we

have
gnk k—+o0
£2F0 g

[
because g, koo, g. Conditional Closure Lemma then yields a subsequence {fnk/}[ with
fnk[ B
——— h, forsome heB,
“fm,H [—>+a0
and h solves the limiting equation
0= (zI=L)h.

This shows h € Kj. Since fm € lp and Iy is closed by Induction Hypothesis, it follows that h € /, and hence
h e Kinlp. In particular, dLst(h Ky n lp) = 0, contradicting dist(f,,, Ky N lg) = |y, || — +00. This proves
CLAIM 1.

8As Matheus pointed out, finite-dimensionality is important:  mere closedness of a linear subspace S in a Ba-
nach space is not sufficient to quarantee that for any vector v outside S, there is a vector s € S with
v — s = dist(v,5). For a concrete example, see https://math.stackexchange.com/questions/296354/

given-a-point-x-and-a-closed-subspace-y-of-a-normed-space-must-the-distance
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Now that sup,, ||f,] < +o, Conditional Closure Lemma yields a subsequence {f,, }x converging to some f in

B, where f solves the limiting equation
g = (z1—L)f.
Since f,, € Iy and Iy is closed by Induction Hypothesis, it follows that the limit f € /, as well, and thus

g € (zI = L)lg = lp11. We conclude the induction step that lp41 is closed. This completes the induction and
shows Iy is closed for all ¢ = 0.

To show K(z) = Ky for some ¢ = 1, we will prove the ascending sequence Ky € K, € - - eventually stabilizes.
For a contradiction, suppose the opposite. Then, there are infinitely many n for which K,_1 & Kj,; collect these
indices to form a strictly ascending subsequence K,,,_, & K, of linear subspaces in B. Riesz Lemma applied

again with t = % yields a sequence f,, € K, with

—

[fo ]l =1 and  dist(f,,, Ky _,) = 5

In particular, the sequence {f,, } is 3-separated.

| ‘m

CLAIM 2: the sequence {L"f, } is S—-separated for all m > 1. Write
— [(1=z="L™)f,

—mym
z L fﬂk+/ Nk41

_ memenk =f

Nk+1

T+ ]

We will show the term in the square bracket belongs to K, which will then imply

ki1
m m m H |Z|n,
L fnk+1 —L f”k“ > [z|" - dlSt(fnkH: Knk+1,1) Z 5 Vk, [=>1;

in other words, we will then have proven CLAIM 2.

First observe L(Ky) < Kp; indeed, if f € Ky, then
(zI = L)°LF = L(zI = L)'f = 0.
This implies L"f,, € K,, because f,, € K,,,.
Second observe (z/ — 1)Ky € Ky_y; indeed, if (z/ — L)’f = 0, then
(zI = L)zl = )f = 0.
Thus, together with the first observation, we obtain

m—1 m—1

(/ - Z_mLm)an./ = Z Z_ij(/ - Z_1L)fnk+z € 2 LjKFIk-H—W = Kﬂk+[—1'
j=0 j=0

It follows that
[(/ _ meLm)f

w27 ] €K
as desired. This proves CLAIM 2.

Nk41—17

To derive a contradiction in order to conclude K(z) = Kp, recall the Doeblin-Fortet Inequality, which we have
assumed to hold for kK = 1. lterating the inequality yields

L) < e+ R A
j=1
Taking f = Lf,, — Lf,,, we obtain
HLm-Hfl?k _ Lm+1fm ” <FmHUnk _ Lme + RZ r/HLm_/Lfnk _ Lm—/Lfm H/

J=1

m
<L+ R Y AMT L, — Ly |,
j=1
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where we have used the fact that |f,, || = 1 and the Boundedness assumption.
Since supy [y, | = 1 < 400, Precompactness yields a subsequence {f, }; such that
|Lfy, — B =220, for some h e B.
Hence, for any € > 0, there are [ # k so large that
L7 oy = L7 | < 20" L] + €
|z l["

Choose m so large that 2r™||L| < # and choose € < 5~ We thus obtain k; # k; such that

|Z|m

5

HLm-H fnk, _ Lm+1 f”k/ ” <

|Z|m

contradicting the 5--separation of sequence {L"f, }; for all m = 1 from CLAIM 2. We conclude that the

sequence K1 € K; € -+ eventually stabilizes and hence K(z) = Ky for some € > 1, as required.

A similar argument shows that the descending sequence /1 2 /, 2 --- also eventually stabilizes. Step | is
complete.

54 Step I

Step Il. LK(z) € K(2), LI(z) € I(z) and B = K(2) ® I(2).
Proof of Step Il 1f f € K(2) = s ker(zl — L)*, then (z/ — L)*f = 0 for some ¢ > 0. Since
(zI = L)°Lf = L(zI — L)'f = 10 =0,

it follows that Lf € K(z). This shows LK(z) € K(z2).

If f € 1(z) = Nysq Im(z/ = L)*, then for each ¢ > 0, there is some g, € B such that
(zI = L)’gy = f.

Now
Lf = L(z] = 1)’gs = (21 — 1)’Lgs e Im(z] = L)®, VY& =0.

This shows Lf € /(z) and hence LI(z) < I(2).

Since both sequences Ky and Iy eventually stabilize K(z) = K, and /(z) = I, for some m = 0, it suffices to
show that B = K, ® /.

First we show B = K, + I,. If f € B, then
(zl=LD)"fely = by
So there is some g € B with (zI — [)"f = (z] — L)?™g, and hence
(zI = L)"[f = (zI = L)"g] = 0.

Now
f=[f—(lI-0L"gl+ @zl —-0)"geKy+ Iy,

and hence B = K}, + /5, as desired.

To see the sum is direct, we show Kj, n /,, = {0}. Take f € K, n I,. Since f € I, we have f = (zI — L)"g for
some g € B. But also f € K, and so

(zI = 1)*"g = (zI — g)"f = 0.

Therefore, g € K5 = K, and hence f = (zI — L)™g = 0. This shows K, n [, = {0} and completes the proof
of Step II. ]
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5.5 Step lll

Step lll. We show (z/ — L) : I(z) — /() is a bijection with bounded inverse.

Proof fof Step IIl. Let m = 0 be so large that K(z) = K, and /(z) = /. Note
ker(zl = L) nl(z) =Kinlp € Ky n Iy = {0}

because the sum K, @ I,, = B is direct from Step Il. So (z/ — L) is injective on /(z).

Also,
(zI = D)(z2) = (2l = DIy = g1 = In = 1(2),

and so (z/ — L) is surjective on /(z). We have shown that (z/ — L) is a bijection on /(2).

Since /(z) is a closed linear subspace from Step |, it follows that /(z) is a Banach space (under the same norm
as B), and hence the linear bijection (z/ — L) is an open mapping on /(z). We conclude it has a bounded
inverse on /(z). This completes the proof of Step IlI. O

56 Step IV

Step IV. K(z) = {0} for all but finitely many z € A(p, p(L)), and K(z) # {0} for at least one z € C with
2| = p(L).

Proof of Step IV. First, for a contradiction, suppose that K(z;) # {0} for infinitely many {z:}i=1 S A(p, p(L)).
By compactness of the closed annulus A(p, p(L)), we obtain a subsequence z, ~—+2> 7 € A(p, p(L)).

On the one hand, since K(z,) # {0}, we have ker(z,/ — L) # {0}. Indeed, if ker(z/ — L) = {0}, then
(zl-Df=0 = =0,

and so

(zIl=D)ff=(zI-D)(zI-1D)f=0 = (z2ZI-0)""f=0 =.-..= (=0,
that is, ker(z/ — L)? = {0}, and hence, K(z) = {0}. On the other hand, if w # z, then

wf # zf,  Vfe B\{0},
and hence (wl — L)f # (2] — L)f, therefore, ker(z/ — L) n ker(w/ — L) = {0}.
The above two observations allows us to form the direct sums
Fno=ker(z1] = L)@ ---®ker(z,/ = L).

Note F1 € F, < ---. By Riesz Lemma, we construct a sequence f, € ker(z,/ — L) € F, with

1
”fﬂH:1' dlSt(fn,F,7_1)>§'

Since f, € ker(z,/ — L), we have (z,/ — L)f, =0, that is, z,f, = Lf,. Now for any n, k, m = 1, we have

1

) 1
1L fosk = Lol = |1 z0 4 Foei — 20 fall = dist(zg o fogk, Fo) = §|Zn+k|m = ipm,

because z € A(p, p(L)).

We derive a contradiction in a similar way as we did in Step |. By iterating the Doeblin-Fortet Inequality
(k =1) for m times, we obtain

n
ILPF < ]+ R AIL"E|, Ve B,Ym =1,
j=1
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Apply this to vector (Lf,1x — Lf,) to get

”Lm+1 fn+l< o Lm+1an <M HLfn-&-k o Lan + RZ rj”Lmiijn-&-k o Lm*/Lfn H/
j=1

<L+ RY. AM YLy — L Yk m =1
j=1

Since sup, |fa] = 1 < +oo, it follows from Precompactness that there is a subsequence n; and some h € B
with
|Lf, — | 2220,

Fix e > 0. We have
HthLWf

o — L"T | < L2+ €, Ym =1, for large L

Since r < p, by taking a large m, we will have

HthLWf

m /l m
N1 L +1fm“ < Ep '
a contradiction. We conclude there are at most finitely many z € A(p, p(L)) for which K(z) = {0}.

To see there is at least one z € C with |z] = p(L) and K(z) # {0}, suppose the contrary. Then, there is some
P’ < p(L) such that K(z) = 0 for all z € C with |z| = p’. So /(z) = B for all z € C with |z]| = p/; it follows
from Step Ill that (z/ — L) has a bounded inverse on /(z) = B. This implies p(L) < p’ < p(L), a contradiction.
We conclude there is at least one such z and complete the proof of Step IV. O

We have proven all four statements of Lemma 7] O
As discussed after the statement of Lemma we now have the complete list of eigenvalues of L in A(p, p(L))

{A, -+ A = spec(L) n Alp, p(L)).

5.7 Step V

Step V. We show that the sum forming F := @'_, K(%) is direct dim(F) < 4oo, LF < F, and that the
eigenvalues of L|f are exactly Ay, -+, Ay

Proof of Step V. To see the sum is direct, take v; € K(4,)\{0} with 3_'_, a;v; = 0 for some scalars o; € C. We
need to show a; =0 forall i=1,--- .

For a contradiction, suppose a; # 0 for some j. By Step |, there is some m > 1 such that K (A;) = ker(A;/—L)"
foralli=1,---,t Define formal polynomials

pi(Z) = (=2, qi2)=]]pr(2).

i#]

Note g;(L)v; = 0 for all i # j, and hence

0=gq,(L) (Z O([Vi) = a;q;(L)v;.
i=1

But @; = 0, and so g,(L)v; = 0.

Since polynomials p;(Z) and q;(Z) have no zeros in common, it follows that they are relatively prime and
hence there are two other formal polynomials a(Z), b(Z) such that

a(2)pi(2) + b(2)q,(2) = 1.
Evaluating this equation at Z = L and applying it to v;, we obtain

vy = (a(D)p;(L) + b(L)q;(L))v; = a(L)p,(L)v; + b(L)q;(L)v; = O,
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a contradiction. We thus conclude the sum is direct.

Since dim(K(A;)) < +oo for each i = 1,- -, t from Step |, it follows that the finite direct sum F = @'_, K (%)
also has finite dimension.

Again, from Step |, we have LK(A;) € K(A;) for each i = 1,---¢t; it then follows that LF < F.

From the eigenequation Af = L|¢f, we derive

t t t
ZC([)\f[Z/\fZ L|Ff= L|F2(1,‘f,‘ 220/[)\[7[[,
i=1 i=1 i=1

and hence
(1[)\:(7,'/\[, Vl=1,,t

Since f # 0, at least one of ; is nonzero. Also, A; € A(p, p(L)) < C\{0}. It then follows that a; # 0 for exactly
one i, and for this i, we have A = A;. This shows the eigenvalues of L|r all belong to {A1, -+, A}

Conversely, for any i = 1,--- , t, we have K(A;) # {0}, and hence ker(A;/ — L)  {0}. It follows that there is
some nonzero f € ker(A;/ — L)K(A;) € F for which

Llgf = Lf = Af.
This shows f € F\{0} is an eigenvector for eigenvalue A; of L|r, and hence the eigenvalues of L|f are precisely
{A1, -+, A} The proof of Step V is complete. O
5.8 Step VI

Step VI. We show H = ('_; /(%) is closed and L-invariant, and B = F @ H.

Proof of Step VI. From Step |, we have already each /();) is closed and L-invariant, and hence the intersection
H is also closed and L-invariant.

For each i =1,--- ,t, we have from Step Il that B = K(A;) ® /(A;), and thus a projection operator
7T,IB—>K()\,‘), JT,‘(f)EK(/\[), (/—JT(‘)I(E/()\,’).

Firstly, note
7T,'L = LJT,'.

Indeed, since LK(A;) € K(A;) and LI(A;) < I(A) from Step II, it follows that
Lt = mL(mif + (I —m)f) = m(Lmf) + m(L(l — m)f) = L,  VfeB.
Secondly, note sty = 0 for all i # j. Indeed, take v € B and let
vi=mi(u) € K(A;) = ker(A; = L)".

By binomial expansion, we have

m
0= (N = L)"v=(Al = A + Al = L)"v = Z (Z) (A — A)" 7 (Al = L)kv

—(X —A) v—l—Z( )A—/\ )" Kl = D)Fv

By reorganizing terms, we obtain

v = Z()AA’” Kl = L)*v.
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Iterating this equation m times, we have

v:l Z(i)A—Aka/—U]mmﬂM&hiw.

It follows that v € /(4;) = ker sr; and hence (mir;)u = m(v) = 0 for any v € B, as desired.

Now we are ready to prove B = F @ H. Decompose any f € B into
Clearly Y!_, mi(f) € F. Also,

This shows B = F + H.

To see the sum is direct, take f € F ~ H. Then, ;(f) = 0 for each i because f € H = (\[_, I(A) = (_; ker ;.
But f e F implies f = >'_, m(f) = 0. This shows F n H = {0} and hence the sum is direct, as desired. The
proof of Step VI is complete. O

5.9 Step VI
Step VII. We show p(L|y) < p

Proof of Step VII. It suffices to show that (z/ — L) : H — H has a bounded inverse for any z € C with |z| = p
Fix sucha zand an he H.

If |z| > p(L), then clearly (z/ — L) has a bounded inverse on B, and hence on H. Now suppose z € A(p, p(L)).

If z¢ {A,--+, A}, then K(2) = {0}. So /(z) = B and hence (z/ — L) has a bounded inverse on /(z) = B,
according to Step Ill. Now suppose z = A; for some .

Recall from Step Ill that (A;/ — L) is an isomorphism on /(A;). So there is a unique f € /(A;) for which
h = (Al —L)f. We show f € H.

According to Steps V and VI, it suffices to check ;(f) =0 forall j=1,--- .
If j =i, then f € I(A;) = ker m; and so 7;(f) = 0.
If j # i, then, by the first observation that ;L = L, we have

0= JT/(/')) = JT/‘(/\,‘/ — L)f = ()\l/ — L)JT]f

This shows 7;f € ker(A;/ — L) = K(4;) and hence m;f € K(4)) n K(4A;) = {0}. We conclude

t
fe()kerm=H
j=1

and hence for each h € H, there is a unique f € H for which h = (z/—L)f. In other words, (z/—H) is invertible
on H. But H is a Banach space for being closed in Banach space B, and hence Open Mapping Theorem yields
that (z/ — H) has a bounded inverse on H. This proves Step VII. O

In summary, we have proven that
B=F®&H

is an L-invariant decomposition with F finite-dimensional, H closed; all eigenvalues of L|r have modulus > p
because {A1, -, A} € A(p, p(L)), and p(L|y) < p. We conclude that L is quasi-compact and close the proof
of Hennion's Theorem. O
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6 Gabriel: Exercise 1.5.4

Exercise 1.5.4. If T has an acip, say i, and 1 is a simple eigenvalue, and all other eigenvalues have
modulus strictly less than 1, then the acip p), is weak mixing, i.e.,

n—1

1 .
lim — > |u(T~'E ~ F) = p(E)u(F)| =0, VE,FeB.

6.0.1 Characterizations of Weak Mixing

Let (X,B,u, T) be a Lebesque measure-preserving space. The space [%(u) is Hilbert with the following inner
product:

t9) = | rgn

Definition 6.1. A complex number A is an eigenvalue of T if it is an eigenvalue of the Koopman operator
Ur : L?(p) — L2(p), e, if there exists f € [?(y) such that f # 0 and fo T = Af. Such an f is called an
eigenfunction corresponding to A.

Lemma 6.2. /f A is an eigenvalue of T, then |A| = 1.
Proof. Suppose Ur(f) = Af, where f # 0. Then:
I = Ur (1) = A2 = IARIFIZ
Therefore |A] = 1. O

Definition 6.3. The probability invariant measure p1 is weak mixing if, for every E, F € B:
anOOEZhJ “EnF)—uE)u(F)|=0. (6)

Lemma 6.4. (Koopman-von Newmann Lemma) If (a,)nen is a bounded sequence of real numbers then the
following are equivalent:

(a)

nlimw; Z la;| = 0.

(b) There exists a subset N of N of density zero such that lim,_, a, = 0 provided n ¢ N. Density zero

means that:
(cardinalitg(N n{0,..., n— 1})) 0
- )

()

,In 1
lim — Z la;|* = 0.
n—aoo

i=0

Proof. If M c N, denote by ay(n) the cardinality of M n {0, ..., n—1}
(b) For each k > 0, define Jy :=={n €N, |a,| = 1/k}. Then /y € J, = ---. Each Ji has density zero since:

*Elll **% n).
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Therefore there exist integers 0 = mg < my < my < --- such that, for n = my:

Loy(m) < —
p e\ =0
Define:
[o0]
U fk+1 N mk mk+1)]-
We now show that A has density zero. Since y € b < ---, if mg < n < myyq, then:
NAaf0,n)=[Nn[0,m)]U[N A [me,n)] < [k [0,m)] o [Jer n[0,0)].
Therefore:
Lope(n) <+ < L (o (me) + g (m) <~ (0, () + @y () < 1+
naNn \n\n ay (Mg QN \n . \n Q)4 \k ki1

Hence (1/n)ap(n) — 0 as n — oo, and so N has density zero. Now, if n > my and n ¢ N, then
n ¢ Jyr1 and, therefore, |a,| < 1/(k +1). Hence:

lim |a,| =0.
N$(L7—>OO| n|

(b)=(a) Suppose |a,| < K for all n € N, and fix € > 0. There exists N, such that n = N implies:

n—1

K
puled=g] X dalt 3 al| < e re< K+ e
ieEN{0,...n—1} €N ~{0,...n—1}
(a)«<>(c) By the above it suffices to note that limyrz, o0 [an] = O Uff limprz, o0 [an]? = 0. O

Theorem 6.5. Let (X, B, u, T) be a Lebesqgue probability invariant space. The following are equivalent:
(a) u is weak mixing,

(b) for all f e L?(u):

n—1

| ;n;;ZKUT =X ] = 0;

(c) for all f, g e [?(y):

lim Z KU, g) = <1, 1X1, )] = 0,

(d) if f € L?(p) is such that Ur(f) = Af for some A € C, then f is constant almost everywhere.
Proof.
a)= y weak mixing, we have that, for A, B € B:
b) B k h hat, for A, Be B

n—1

i, 3% KRG @) — G DXL )] =0
i=0

Fixing B and picking h to be a simple function, the bi-linearity of inner product and triangle inequality
imply that:

lim 52 KUE(h), X8 = (h, IX(L, xg)] = 0.

n—aoo N
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Now, fixing h, we conclude that:
1 n—1 .
i 3 KU ).y = <h 1L ] = 0.

So (b) is valid for simple functions. Suppose f € [?(ys) and let € > 0. Choose a simple function h such
that |[f — h|l2 < €, and choose N(€) so that n = N(e) implies:

n—1
- Z KUr(h). hy = h IXL, bl < e
Then, if n = N(e):

n—1

- Z [CUR(F), £y = LU (h), O] + = 2 [CUF(h), £y = (Ur(h), b))l

N

*EKUT 1) = (L IXL, B

n—1

+- Z [KUT(h), hy — <, 1)L, b

—

- Z [<h KL, by = C(F XL, B

3
o

—
;

. |<f XL, hy = {1

=

n—1
SO =01+ 5 ey, -y e
i=0

i=0
+[KL W Kh =1, 1] + K, DKL, b = 1)
I = hl2lfllz + If = hllzlbl2 + € + (Al = Al = I7l21h = 112
elflz + e(lfllz + €) + e + ([f]2 + €)e + €] f]2.

3

N

15
n

NN

Therefore, 2 3777 |<U‘ (), =< 1X1, )| =0.

(b)=(c) Let f € [?() and let H; denote the smallest (closed) subspace of [?(ys) containing f and the constant
functions and satisfying UrHy < ‘Hy. Define:

Fr= {g e L(p 2 KUT(F), gy =, 1XT, g)l = 0}

By hypothesis, F is a closed subspace of L(1/) containing f and the constant functions. Since this set is
Ur invariant, it contains Hy. Now, if g € Hf, then (U?(f), g) = 0 for n = 0 and (1, g) = 0. Therefore,
H%‘ c Fy, ie, Fr = LZ(/J).

(c)=(a) Just choose characteristic function.

(b)=(d) Suppose Ur(f) = Af for some f € L?(u). If A =1, then f is constant a.e. by ergodicity of y/ (weak mixing
implies ergodicity). If A # 1, then:

Affdu:ffo Tdu:deT*u:deu.

Hence {f, 1) = 0. Then, by hypothesis:

n—1

n—1
lim — Z [KAF )] = lim 120 [CUL(F), £ = 0.

n—aoo N

Since |A] = 1 this gives {f, ) = 0 and therefore f =0 a.e.
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(a) This step requires some additional results as follows.

Definition 6.6. If n < 0, we define U} := (U¥)I"l, where U# is the unique operator such that {(U%(f), g) =
(f, U%(g)) for every f, g € [?(1). Note that, if T is invertible, then Uy' = (Ur)~"

Definition 6.7. If f € [?\{0}, we define the spectral measure of f as being the unique measure vf on S' such
that (U7(f), f) = §< 2"dvy for every n € Z. (existence and uniqueness of v,?)

Proposition 6.8 ([?], Proposition 3.3). /f T satisfies (d) on Theorem then all the spectral measures of f € L

such that § fdu = 0 are non-atomic (ie. unitary sets have zero measure).

Proof. Suppose f € [?(u) has measure zero and that v; has an atom A € S'. We will construct an eigenfunction
with eigenvalue A. Consider the sequence:

n—1

fZA UL(f

This sequence is bounded in norm, therefore has a weakly convergent subsequence (why?) (here we use the
that [2(y) is separable — a consequence of the fact that (X, B, i) is a Lebesgue space):

n—k;)k LUH(f

The limit g satisfies (Ur(g), h) = {Ag, h) for all h € (i) (checkl). Therefore g is an eigenfunction with
eigenvalue A. Now we show g is non-constant. We have:

ni—1 ”k 1
(g, ) lim — Z ATUS(F), £ = lim — J A" 2 vy (2
S1

k—00 Ny k—0o0 Ny fy
/7k 1
= vi({A}) + lim — J A~ Zdv(2)
k—0o0 Ny i—0 IS\ {4}
1 — Az
= A Li . 7d .
({ }) + kin;c LW\{A} Nk 1—A"1z {(Z)

The limit tends to zero, because the integrand tends to zero and is uniformly bounded by 1. Thus (g, f) =
vr({A}) # 0, whence g is non-constant. This contradicts the hypothesis on T. O

Lemma 6.9. /f T satisfies (d) on Theorem then for every real-valued f € L*(p):

n—1

lim — Z ‘<UT Y, 11>2‘ ~0.

n—oo N

Proof. 1t is enough to consider the case when §fdy =0 (when §fdu # 0, applie the result for F := f — § fdpu).
Let v be the spectral measure of f. Then, for each n e N:

lgkwo,o\z “Z [ |

[l
S| =
. s -
Il |
o —_
7 N\

= :’r:_; L LW Z"w'dvi(z)dvr(w)
- LW L % (éz w ) dv(z)dvi(w)



The integrand tends to zero and is bounded outside A := {(z,w); z = w} (why?). If we can show that
(vi x vp)(A) =0, then it will follow that:

,}Lmoo;Z\WT | -

This is indeed the case: T satisfies (d) on Theoren[o.5] so, by the previous proposition, vf is non-atomic. By
Fubini-Tonelli, it follows that (v¢ x ve)(A) = §o vi({w})dve(w) = 0.

Now, by Koopman-von Newmann Lemma, for every bounded non-negative sequence (a,)en, % o 01 a, — 0
iff %2:01 a’? — 0, and this completes the proof. O
Proposition 6.10. /f T satisfies (d) on Theore then for every real-valued f, g € [*(u):
n—1
Jim — Z U5 (1), gy <. 19 ] =0 7)

Proof. Again it is enough to consider the case when § fdu = 0. Define:

S(f) = span {U}(1); n = 0} u {1}.
Then [2(4) = S(f) @ S(f)*.

e Every g € S(f) satisfies (7). In fact, note that if g1, ..., gm satisfy (7), then so does g := >} a;g; for any
a; € R. Therefore it is enough to check (7) for g := U}(f) and g = constant. Constant functions satisfy
(7) because, for such functions, §g-fo T"dy = 0 for all n = 0 since §fdy = 0. Set g := U} (f) for some
n = 0. Then, for all m = n:

Jg foTmdy = J(fo TY(f o T™)dy = Jﬂ foTmndu™M*3% 0,

for some N < N of density zero, by I_emm The claim follows by Koopman-von Newmann Lemma.

e Every g L S(f)@{constants} satisfies (7), because (g, foT") is eventually zero and § gdy = (g, 1) = 0.
O

Remark 6.11. Choosing characterisc functions in (7), we conclude the implication (d)=(a) on Theorenfo5 [

6.0.2 The Exercise

Exercise 1.5.3. If T has an acip, say 1, and 1 is a simple eigenvalue, i.e., dim{g e L'(y): Tg = g} =1,
then the acip i, is unique and ergodic.

Remark 6.12. Being py the unique acip, we conclude that p, = .
Lemma 6.13. [?] Proposition 1.1] The following are equivalent:
e /i is ergodic;
e (ff: X — R is ameasurable function such that f o T = f a.e, then f is constant a.e.

Lemma 6.14. If f € L'(y) and g € L*(u), the following equality holds:
T((foT)-9)=1T(g)
Proof. Fix ¢ € L®(u). Then:
[eTwon gau=[won-treryguu= 1o 0o 11008 [(0:1) T @ = (o[- T@)] o
Therefore 7 ((fo T)-q) =1 -T(g). O

9Repeat the proof of Characterization of the Transfer Operator interchanging the roles of L'(u) and L% (p); in fact it is valid for every
p.q € [1,00] such that p~' + g~ = 1.
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Exercise 1.5.4. If T has an acip, say i, and 1 is a simple eigenvalue, and all other eigenvalues have
modulus strictly less than 1, then the acip p, is weak mixing.

Proof. By Exercise 1.5.3, we know that p, = p and p is ergodic.

Let f € [?(y) and A € C be such that f o T = Af. We need to show that f is constante a.e. By Lemm
[A] = 1. Now, by the previous lemma, we have:

TOH=T((foT) 1) =f-T(1)=".

This implies that ?(f) = 1f. But |[{| = |A| = 1 and, by hypothesis, we conclude that A = 1. Being u ergodic,

it follows from Lemmab. 13l that f is constant a.e. ]

Next Exercises: Show that Exercises 1.5.3 and 15.4 are “iff".
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7 Edmilson: space of Lipschitz functions
Check (Lip, || - [Lip) is @ Banach space;

Proof. Disclaimer. We denote the space of Lipschitz functions as (L, | - ||) where

[ == [ llee + Lip(£),

ip(r = sup { =01

Xy |X_U‘

To prove that (L, | - ||) is a Banach space, take a Cauchy sequence {f,}, < L. Hence, for a fixed € > 0 there
exists Ny > 0 such that for n, m > Ny we have

If, — fn] < €. (8)
By the definition of | - | we conclude

e> Lip(f, — fn)

- fn(x) = fn(y)|x__(';n|(x) - fm(y))‘.

Note that f,(x) is clearly a Cauchy sequence of complex numbers for any fixed x € [0,1]. In particular, by
completeness of C there is a limit f(x) for each x. Thus, we get a limiting function f(t). Moreover, letting
m — o0 in

[ (x) = Ta(y) = (fn (%) — T (y))]
x =yl

<eg, Yn,m> Ny, x#yel01]

we see

2 (%) = fa(y) = (F(x) = (y))]
Ix =yl

< E&.

If we define g, := f, — f, rearranging the above expression, we obtain

1gn(x) = gn(y)] < elx —yl,

which means, g, is a Lipschitz function, ie, f, —f € L. By assumption, f, € L, so we conclude f = f, —g, € L,
since the difference of two Lipschitz functions is Lipschitz.

Since f € L, we proved that any Cauchy sequence with respect to || - | converged to a point inside the space.
Hence, the claim follows. O

Prove ||f]l, < Lip(f) for complex Lipschitz observables f : [0,1] — C with {fdLeb = 0.
Definition 7.1. A subset S < R" is said to be convex if (1 —=A)x+Aye Sforall x,ye Sand0 <A< 1.

Definition 7.2. The intersection of all the convex sets containing a given subset S < R" is called the convex
hull of S and is denoted by conv S.

Let xq, ..., xn € R". A vector sum
Axr 4+ Apxn

is called a convex combination of xq, ..., xm Uf the coefficients A; are all non-negative and A1 + -+ A, = 1.

Theorem 7.3 ([Roc/Q)). For any S < R”, conv S consists of all the convex combinations of the elements of S.
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N

R(f) = f([0, 1)

(a) Image under f is denoted R(f) = C.

C Situation 1

~
| comR()

2 N
AN

Ng

Situation 2

(b) Left panel shows the convex hull of R(f) in shaded blue.
Note the origin is not in the R(f), even though we there are
points of the type (x,0) and (0,y). Right panel shows two
distinct situations: Situation 1 is the case in which the origin
is inside the convex hull of R(f), conv R(f), and situation 2

is the opposite case where the origin is in the complement of
conv R(f).

Figure 7: The reason for the origin to be inside the closed convex hull R(f) is captured by the geometric

picture depicted in Situation 1 and 2. Note both figures differ in where the argument of replacing sup |f(x)| by
the diameter of R(f) is correct.
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Proof. Having Figure [7] in mind the proof goes as follow. Assume O is in the closed convex hull of f([0, 1]) (O
is inside the blue region). Then,

[l = ess sup |f(x)]
x€[0,1]
tam(f([0,1]))

< )
< Lip(f)diam([0, 1]) = Lip(f).

d
L
We prove the following claim: 0 € conv f < C.

We can construct a probability measure (an average of delta measures over equally spaced points in the interval

[0, 1]) such that in the limit this converges to the Leb measure on [0, 1]. This average is a convex combination
on the interval, and in the limit, on C. That is,

/I n "
Up = Z 0i/n — Leb.
n+1 =

Hence, in particular, since f is continuous, then

1
n+1-+

L

f(i/n) = jfdun — fdeeb =0.
=0

So, we conclude 0 could be written as a limit of a sequence (y,), of the form y, = >/, Af(i/n), XA =1
and for each i: A; = 0.

Discuss how norm dominance in the subspace is related to the ideas of compact embedding.

Finite-dimensional example. Pick the real line R and think as an object into the plane, R?, where both space
are given by the Euclidean norm. So, we could think as a map:

R ) = (R ] ]2)
x — (x,0).
In this case, |||l = [|(x, 0)||> for every x € R.
This motivates us to introduce the notion of continuous embedding.

Definition 7.4. (Continuous embedding) Let B and B’ be two normed vector spaces, with norms |- |z and | - |5
respectively, such that B < B'. If the inclusion map (identity function)

iB—B

X — X
is continuous, L.e. if there exists a constant C = 0 such that
Iz < Clix|s

for every x € B, then B is said to be continuously embedded in B'.
From this definition, the norm dominance we observed so far are:
e From the previous exercise, we conclude L is continuously embedded into L%.

e And more importantly, since X = [0, 1] has finite measure, we conclude L is continuously embedded into
LY (Il < [0

Norm dominance per se is not enough to prove Hennion's theorem. We need in addition that the embedding of
B into B’ is a compact operator.

Definition 7.5. (Compact embedding) Let B and B’ be two normed vector spaces, and suppose that B < B
We say that B is compactly embedded in B’ (B cc B') if
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e B is continuously embedded in B’; and

e the embedding of B into B’ is a compact operator, i.e., any bounded sequence in B admits a subsequence
which is Cauchy in the norm of B'.

Assumptions of Hennion's theorem: variants

Compact embedding

Continuity Pre-compactness :
L 8 c @
£ >R ) {fuln € L s.t.supllfull < o0 :
o o~ Illlgr < Clixlls
el g et ~
koo {fuln € B s.t.supllfull < o
”Lfnk - g”, —> 0
: 3 nyx Cauchy sequence
: : )
Boundedness § : {futr € B

AM >0, Vfel

ILAI < MIfII

Figure 8: Left hand side shows Sarig's statement of Hennion's theorem. Right hand side shows a variant
formulation in terms of compact embedding.

Theorem 7.6 ([Ball18]). Let L : B — B be a bounded operator on a Banach space (B, ||-|), and let (B, -|") be
a Banach space containing B such that the inclusion B < B’ is compact. Assume that there exist two sequences
of real numbers r, and R, such that for any n =1 and any ¢ € B

|| < rallel + Rallel”
Then the essential spectral radius of L on B is not larger than

. 1/n
l%rltoonf(r”) .

For a definition of essential spectral radius and an alternative definition of quasi-compactness see Hennion
and Herve's book [HenO1] (Sarig cite this book in the end of Appendix A3.
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8 2020.3.10 — 24 Meetings 9-11: Sarig L3, Analytic Perturbation Theory

This section studies the analytic perturbation of a bounded linear operator and culminates in Theorem [8.19]
which says that a small analytic perturbation does not destroy the spectral gap. We will later use this result
to prove the Central Limit Theorem.

Let (£, | -|) be a Banach space over C, B = B(L) denote the space of all bounded linear operators L : L — L

with norm ILx]
X
L] == sup —.

xe£\{0} x|

Denote by L* the space of all bounded linear functionals ¢ : £ — C with norm

lp(x)|
Il == sup ,
xeL£\{0} Ixl

and similarly denote by B* the space of all bounded linear functionals ¢ : B — C.

We will be interested in one-parameter (complex) family L,, z € U < C of bounded linear operators L, : £ — L.
More precisely, let U < C be open and nonempty, and consider

L:U—-B, z+—1L,.
This dependence of L, € B on z € U will be "analytic” (a notion to be specified below). Hence, we may think

of the family L, as an analytic perturbation of some fixed operator L.

8.1 Calculus in Banach Spaces

8.1.1 Riemann Integral and Riemann Sums

Recall the area under a continuous curve f : [a, b] — R is calculated by Riemann integral Ss fdx, defined as
the limit of Riemann sums

n
Z f(g[tt,tt+1])[t£+1 —ti],
i=1

where 0 =ty < th < -+ < tyyq1 = b, iy, € [t tix1], and the limit is taken as the mesh size
max;=1... » [ti+1 — ;| tends to 0.

To see this limit exists, take two meshes M’ = {t{,--- , t/,.;} of size 0" and M" = {t{,--- !, |} of size 0"
Amalgamate the two together to obtain a finer mesh M = {t;,--- , t,41} of size 0 := min{d’, 6”}. Denote by

R(M) the Riemann sum for mesh M.
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Figure 9: Two meshes M’ of size 0’ and M” of size 0” amalgamate to a refinement of both meshes, namely,
M of size 9. The Riemann sums R(M’) and R(M") corresponding to the two meshes can be compared against
R(M), establishing Cauchy-ness of the Riemann sums.

Fix € > 0. By uniform continuity of continuous f on compact interval [a, b], there is some 0(e) > 0 for which
[x — y| < o(e) implies |f(x) — f(y)| < e

When ¢', 0" < 0(€), we have

IR(/\/”) — RIMI)| < [RM') = RIM)| + [R(M) = R(M")]

17”
Z [t i1 — 6] — Z F(&gi i Pty — 1]
i=1

n
L [ty —t]— Z F(Stnp)) i — i)
i=1

n

n
2 F(Sre ) [t — t] Z;f [, /f>+1 [tiv1 —t]],
= (=

n

F(& — 1] = > (g t
Z (E[[/’(l)’[//(l)er L+T l ttl+1 t+1 :|

i=1 i=1

+

where [t] ), /) 4] is the unique interval from mesh A" which contains the finer interval [f;, ti11] from mesh
M. We continue

n n

[RIM') = R(M")| <) max If(f)*f(S)l[tw*h]wLZ max |1(t) = F(s)[[tixr — 1]

=1 €l ol R LONONRY

n

i e[tiv1 — Z e[tiv1 — t;] = 2e(b — a)
i=1

i=1

Since € > 0 was arbitrary, it follows that the Riemann sums are Cauchy, and hence converge by completeness
of R.

8.1.2 Line Integral for C-valued Functions

Let U < C be open and nonempty, y € U a curve with smooth parametrization z(t), t € [a, b].
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Suppose f : y — C is continuous. Then the line integral Sy f(z)dz of f on curve y is defined as the limit of
Riemann sums

n
DN [2(tin) — 2(8)],
i=1
where a = t) < t, < -+ <ty = b, &€ [t;, tiy1], and the limit is taken as the mesh size maxi—1... , |tip1 — ti]
tends to 0.
To show the limit esttﬂ we make use of the C'-smoothness of z by writing
n

S (& eltin) — 2(t)] = S (G 2 =20 gy o)

P e tiyr — &

Again, take two meshes M’ = {t],--- ,t;/H} and M" = {t/,--- ,t;’,/H} of sizes ¢’ and 0", and amalgamate
the two together to obtain a finer mesh M = {t1,--- , t,41} of size 0 := min{d’, 0”}. Denote by R(M) the

Riemann sum (9) for mesh M.
Fix e > 0. By differentiability of z at t € [a, b], there is some 01(¢, t) > 0 for which

|2(t) = 2(s)]

—t| < 01(e, t =
s <ai(e) —

- Z’(f)‘ <e.

By compactness of [a, b], we obtain a uniform size 0;(€) > 0 for which the above implication holds. So when
0, 0" < 01(€), for mesh M, we have

|2(tiv1) — z(t)|

— (¢ ‘ <e.
tiy1 — 1 (t)

And similarly for meshes M’ and M”.

Since z is C', its first derivative 7' is C°, and hence uniformly continuous on compact interval [a, b]. So there
is some 0>(¢€) > 0 for which
|s—t|<d(e) = |Z(t)-7(s)|<e

By uniform continuity of continuous function f o z on compact interval [a, b], there is some dp(€) > 0 for which

[s—t|<ole) = |f(z(t)) —f(z(s))] < e

0Another, perhaps simpler, way to show convergence of Riemann sums is to make the Cauchy-ness argument directly for
> F(z(S1t ) [2(ti1) — 2(8)]. We will use C'-smoothness of the parametrization z for y to establish 31, |z(ti+1) — 2(t)| —
length(y) < 400, which is not generally true for continuous curves.
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When ¢, 0” < min{do(€), 01(€), 02(€)}, we have
[RIM') = RIM")| < [R(M') = RIM)| + [R(M) = R(M")|

o 2(th) — () ! Z(tip) — z(t;
S Y M AUES DA UON VIS o TP0 MY Vel ek GOJ P
= i+1 tl-‘rW t[ = tH_j tL
d 2(tigq) — 2(t) () — 2(t])
#0 eG)  = en — ) = S ) M — ]
=1 =1 L

<
= / /
tipg — G

u t/ - tl( / / - / 1 INT 4/ /
S (@ DI S S ) ]
=1 [

+

D Sy, )7 Dt = €] = Y )7 (@l — ]
i=1 '

3

: Z(t; — Z(t;
+ 2D (2 )2 ()i — 6] = ) f(z(é[tlvtl+1]))(t113_t()[ti+1 —t]
i=1 i=1 ! !
+ Zf(Z(f[m.m))Z’(tl)[tm t] = D H@ (&g )2 (EO[tq — 1]
i=1 i=1
< (f,” ) — 2()
r” th /(tl(/ z-M B t” Z f t{’ r[’ﬁ ;/1 Y [tﬁH - t{l]
i=1 i+1 i
S Z |f t/ thq 6[ti/+1 - tl/]
+ Z f(Z(Efqm,rI’(w]))Z/(f,/-(i))[f£+1 —t] - Z F(2(Spt0)) 2 () [tier — 8]
i=1 i=1

+ 2 Z |f tx [H»W [tl"rw - tt]

n

Sae)Z (tear = 6] = D F@(&y D7 (Gt = ]

i=1

+2v g Dty — 1.

By denoting G := maxe[q,p] |f(2(t))|, we continue
n

IR(M') — RIM")| < 4Cye(b — a) + 22 max  |F(z(s)Z(s) — F(2(6))2'(D)|[tis1 — L].

15ttt 411

By denoting (5 := maxe[q ] |2'()], we have

ste[vmaii( |f(z(5))zl(5) o f(Z(t))Z/(t)‘

OO+

S e f(2()7'(s) = £(2(5))Z' (D)] + |£(2(5))Z' (1) = F(2(1))Z'(¢)]
< max  GlZ(s) = Z(0)] + Glf(2(s)) = f(2(0))]

st€ltie Ly +1]
<CGe + Ge.

Now we have

IR(M') — RIM")| <4Cye(b — a) + Zi(ae + Ge)[tip1 — t]
i=1
=4Cie(b—a) + 2(Cie + Gee)(b — a) = €(6C1 + 2G) (b — a).
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Since € > 0 was arbitrary, it follows that the Riemann sums are Cauchy and hence converge by completeness
of C.

8.1.3 Line Integral for B-valued Functions

Now suppose L : y — B is continuous. Then the line integral §yL(z)dz on curve y is defined as the limit of
the Riemann sums

D L&) [2(tir) = 2(8)],

n
i=1
where a =t < th <.+ < ty41 = b, &€ [t;, tix1], and the limit in B is taken as max;—1.... » [tiz1 — ti] = 0.

To see the Riemann sums are Cauchy, we proceed exactly the same way as we did for line integral for C-valued
functions, replacing |f(z(t))| by ||L(z(t))|. Then, completeness of B gives convergence.

If p:[a, b] — [a, b], p' >0, is a reparametrization, then the line integral

L L(z)dz = Jb L(2(6))Z'(£)dt

a
of L on curve y reparametrized by Z = z o p coincides with

LL(z)dz _ jb L(2(0)7 (H)dt

a

by change of variables s = p(t). Indeed,
b

b b
| ez = [ ez = [ e )z porp o= |

a a a

[(z(s))Z' (s)ds = J [(z)dz.

y
This shows that the line integral Sv L(z)dz of L on curve y is independent of the smooth parametrization z.

Lemma 8.1 (Ex 3.1). Suppose L.y — B is continuous. For any ¢ € L*, we have

¢ [ L L(z)dz] - jy(p[L(z)]dz.
T [ L L(z)dz] - JV T[L(2)]dz

Proof. As ¢ and T are both continuous, it is easy to see that they commute with the limit of the Riemann
sums. O

For any T € B, we have

8.1.4 Differentiation

Theorem 8.2 (Analyticity Theorem). For any complex family L : U — B of bounded linear operators L, : L — L,
ze U< C, on a complex Banach space L, the following two notions of analyticity are equivalent.

1. Weak Analyticity. For any ¢ € B*, the function ¢[L(-)] : U — C is holomorphic.
2. Strong Analyticity. For every z € U, there is some L'(z) € B, called the “derivative of L at z’, such that

0

‘ Lot h)=1E) iy

|h|—0
——

A proof is given in Sarig's Appendix, and we will prove it later.

Lemma 8.3 (Rules of Differentiation, Ex 3.2). Suppose L, Ly, L, : U — B are analytic.
1. (Li(2) + L2(2))" = L5(2) + L5(2);
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2 (Li(2) 0 [2(2))" = [1(2) © La(2) + L1(2) 0 [5(2);
3. when L, is invertible for every z € U, then (L; ') = —1;' ol o',

4. if o e B*, then (poL,) = ¢@oll.

Proof 1. Note
(Ly+ L)(z+h

~—

— (L + L)(2)

- () + 1)

. Lz(Z + hf)) — Lz(Z) _ Lé(Z)

Lz(Z + h) — Lz(Z)
h

h|—0
L,o'

N

- 1)

2. Note

A DD )10+ 140 5

< L1(Z+ h)OLz(Z+ /7) — L1(Z+ h)O Lz(Z)
= h
N ' Li(z+ h) o Lr(z) — L1(2) o Ly(2)

h
Lo(z+h) —
btz + iy |22
d

3. Note

+Li(z+h) o L3(2) — Li(z) o L(2)]

— Ly(z + h) o L5(2)

— L} (2) o L2(2)

L@ _ )|+ 1L+ h) - L@ E)

WEE D0 ) e

h|—0
Lo‘

@) + 17 2) o l'(2) o L7Y(2)

@, LN z+h)ol'(z) o L7(2)

N

+|L7(2) 0 L’(z) ol "2y =Lz +h)ol'(z)o ™" (Z)H
—L4@+hw[“”‘ﬂz+“+ﬂ&ﬂot )+ @) = e+ Mo ) o 172

Lz+h) —L@)
h

<w4@+mﬂ I @1+ 1@ - @+ @I @)

Since every L,, z € U is invertible, so is every L(z + h) for small h by openness of U. It follows by Open
Mapping Theorem that these inverses are also bounded linear operators on £. Hence, the above estimates tend
to 0 as |h| — 0, by definition of L’(z). This proves the formula.

4. Note

pol(z+h) —gol(z)
h

— o l'(2)| <9l ’WL])L(Z) _

O

Theorem 8.4 (Cauchy Integral Formula). If L : U — B is analytic on U, then L is differentiable infinitely many
times on U. Moreover, for any z € U and any simple closed smooth curve y < U around z, we have
n! L($)

and  L"(z) = 5 T atal
14

2m E—Z
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Proof. By weak analyticity, ¢[L(-)] : U — C is holomorphic for any ¢ € B*. By Exercise 324 and strong

analyticity, we have
L gl ()] = ol (2]

is holomorphic too. In other words, L'(z) is (weak) analytic. Induction gives that L(z) is differentiable infinitely
many times on U.

For any ¢ € B*, note

[Zm 4 ] - Zimf (pg‘[L,(i)]dg = ¢[L(2)],

by the usual Cauchy Integral Formula for the holomorphic function @[L(z)] : U — C. Since this equality holds
for all ¢ € B*, and bounded linear functionals separate points, see Proposition it follows that

me q.(_Zdé—L( 2).

The formula for higher derivatives is proved exactly the same way using the usual Cauchy Integral Formula for
holomorphic function ¢[L(2)] : U — C. O

Proposition 8.5 (Ex 33). If L : U — B is analytic and y is a simple closed smooth contractible curve in U,
then
J L(z)dz =
v

Proof. Fix any ¢ € B*. By weak analyticity, the function ¢[L(-)] : U — C is holomorphic. It then follows from
Exercise 3.1 and a basic property of holomorphic functions that

ol| Lzl = | eltnez =0 plo)
14 14
Since this holds for any ¢ € B* and bounded linear functionals separate points, the asserting follows. O

Proposition 8.6 (Ex 3.4). If a sequence {T,},>0 € B satisfies || T,|| = O(r") for some r > 0, then the power

series
2 (z=a)'T,

n=0

converges and is analytic on {z€ U : |z —a| <1/r}.

Proof. The big-O notation means that there are C, N > 0 such that
[T.] < Cr", ¥n=N

Fix any z € U with |z —a| < 1/r. Then,

N—1 N—1
2 lE—a) Tl = Y lz=al’ITal + X |z = al’ITal < 35 1z = al"[Tall + 3 12— al"Cr".

n=0 n=0 n=N n=0 n=N

Since |z — a|r < 1 by choice of z, we conclude the power series converges absolutely on {z: |z — a| < 1/r}.
Write T(z) := >, 5o(z—a)"T, for ze U with |z—a| < 1/r. Fix ¢ € B*. By continuity and linearity of ¢, we

have
o[T(2)] = Y} (z—a)¢[Ta].
n=0
Since the power series for @[T (+)] converges absolutely
D lE=a)elTll < Y1z = al"l@llITal = [l D} 1(z = a)" Tu]l < +0

n=0 n=0 n=0

on{ze U:|z—a| <1/}, it follows from properties of holomorphic functions and power series that ¢[T(+)]
is holomorphic on {z € U : |z —a| < 1/r}. This implies T is (weak) analyticon {ze U:|z—a| < 1/r}. O
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Proposition 8.7 (Ex 35). A family L : U — B is analytic on open set U < C if and only if for each a € U,
there is a sequence L,(a) € B, n = 0, and a radius r(a) > 0 such that

[Ln(a)] = O(r(a)™") and L(z) = Z(Z —a)"Ly(a) on {ze U:|z—a| < r(a)}.

n=0

Proof. (<) By Exercise 3.4, we have L analytic on {z € U : |z — a| < 1/r(a)} for each a € U. This implies
that L is analytic on the entire open set U.

(=) Fix @ € U and take R(a) > 0 with D(a, R(a)) < U. Define
F(z):=Lz+a), zeD(0,R(a)).

Note F is analytic on D(0, R(a)). Fix z € D(0, R(a)) and let r := W4 For any & € dD(0, r), we have

1
E*zzﬁfé é%( )

By Cauchy Integral Formula, we have

1 F() 1 ! (Z)
F(z) ==— =5 FOz 201\
(Z) 27 aD(0,r) dc-'( 27i oD(0,r) (5)517220 S %
1/7z\"
_ o1 (2) de
LD(O,,E SHOK

It is easy to see that 3 Z,T,F(g)

n
% (%) converges absolutely and uniformly on éD(0, r) and hence we may
interchange the limit and integral. We ¢

ontinue

dE
= J:?]D 0.r) 27” g‘(n+1

Now returning to L, we have

L(Z)=F(Z—G)=Z(Z—a)"f L&df on {zeU:|z—a| <R(a)}.

n=0 oD(a,r) 27i (& — a)rnt?

Take L,(a) Sé’IDJ (@) 21 (L(j),,“dc? Note (20) < r < R(a) and hence

i (&

ltao)l < 20 e o< (B2 mex 10l

ceoD(a,r) 2 &eD(a,R(a))

This shows ||L,(a)| = O(r(a)~") where r(a) = R(a)/2. The proof is complete. O

8.2 The Resolvent and Eigenprojections

Recall the spectrum of L € B is defined as

spec(L) := {Ae C: (Al — L) has no (bounded) inverse}.

Proposition 8.8 (Ex 3.6). The spectrum spec(L) of any L € B is a compact set in C.

Proof. 1. If |L|| < 1, then (/ — L) has a bounded inverse given by

(=0 =14+L+1%+
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Indeed, note 372 I < D2, IL]|F < %HLH < +00, and hence the partial sums

L, := i K
i=0

are Cauchy. It follows from the completeness of Banach space B that L, converges to some Lo, € B, and in
particular, L" — 0. On the other hand,

(I=DLlo = lim (I=0)Ly= lim L,—LL, = lim I+ L4+ 4 ") = (L L2 1" L")

n——+0o0 n n——+o0

=/— lim "=
n—-+400

A similar argument shows that Lo (/ — L) = /. We conclude L, = (/ — L)~
2. (zI — L) has a bounded inverse provided |z| sufficiently large.

For |z] > 0, write zI — L = z(/ — z='L). When |z| > |||, we have |z='L| = |z|7"|L| < 1 and hence, by item
1, (I — z7"L) has a bounded inverse; in this case, so does (z/ — L).

It follows that spec(L) < D(0, ||L]). In other words, spec(L) is bounde in C. It remains to show that spec(L)
is closed in C.

3. Show that if (/ — L) has a bounded inverse, then so does any (/ — Ly) with |[L; — L] sufficiently small.

We show that for any invertible F € B(L), we have F + G also invertible, provided |G| sufficiently small.
Indeed, note
F+G=F(+FG).

When |G| < [[F~"|~" (note ||F~"| < 4o by Open Mapping Theorem), we have
IF'Gl < IFIG) <,

and hence (/ + F~'G) is invertible by item 1. This implies F + G is invertible too.

In fact, if f is any Lipeomorphism on a Banach space X and g is a Lipschitz function with sufficiently small
Lipschitz constant, then f + g is another Lipeomorphism. Indeed, since

f+g=rfo(d+f'og),

it follows that when
Lip(g) < (Lip(F=") ",

we have Lip(f~"og) < Lip(f~")Lip(g) < 1, and hence (id+ f~" o g) is a Lipeomorphism by Lipschitz Inverse
Function Theorem (a consequence of the Banach Fixed Point Theorem).

4. Take a sequence {z,}, < spec(L) with z, — z for some z € C, and we show z € spec(L).

If z = 0, then we need to show that (0/ — L) = —L has no bounded inverse, or equivalently, that L has no
bounded inverse. Suppose the contrary. Since (z,/ — L) has no bounded inverse, it follows that

(zol = )L™ =z, L7 —

has no bounded inverse; otherwise, L~"((z,/—L)L=")~" would be a bounded inverse for (z,/—L). Equivalently,
| — z,L =" has no bounded inverse. Since

2oL ™" =0 = |z |IL71] === 2l = o,

it follows from item 3 that / = / — 0 has no bounded inverse, a contradiction. We conclude in this case L has
no bounded inverse, as desired.

Mt is worth noting that Sarig purposefully proved boundedness of the spectrum from scratch, rather than make use of estimates
p(L) = nl;lmoo VL = infy=1 A/][L"]l, in order to avoid circular arguments. More specifically, the proof of this limiting equality hinges

on the analycity of the resolvent, which in turn assumes compactness of the spectrum.
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When z # 0, we assume without loss of generality that z, # 0 for all n. If (/ — f) were to have a bounded

-1
inverse, then z,! (/ — ZL) would be a bounded inverse for (z,/ — L), contradicting z, € spec(L); we thus

conclude that each (/ - ZL) has no bounded inverse. But since

L L

Zn V4

1 1

Zn

n—-+40o0
T 0'

it follows from item 3 that (/ — %) has no bounded inverse. In other words, z € spec(L). This shows spec(L) is
closed and completes the proof. O

Definition 8.9 (Resolvent). Given a bounded linear operator L : £ — L on Banach space L, on the complement
of its spectrum, we define the resolvent

R:C\spec(L) = B, zw (zI—1L)"

Proposition 8.10 (Properties of the Resolvent, Ex 3.7). 1. Commutation. R(z)L = LR(z).
2. Resolvent Identity. R(w) — R(z) = (z — w)R(z2)R(w).
3. Neumann'’s Expansion. R(z) = Y7 (—1)"(z — 20)"R(20)"*", for any zy € C\spec(L) and z sufficiently
close to zp.
4. Analyticity. The resolvent R : C\spec(L) — B is an analytic function.
Remark 8.11. It makes sense to speak of the analyticity of the resolvent, because we know C\spec(L) is a
nonempty open set from compactness of spec(L).

Proof. 1. Note
R(z) = (zI =) "L = (21 = )" "L(zl = L)(z] = )" = (2l = L)Wzl = )L(z] = L)™' = LR(2).

2. Note
R(w) = R(z) =(wl = L)" = (zI =)™ = (2l = L) [(z] = L) = (Wl = L)](wl = L)~"
=(zI =) [z=w](wl = L)™' = (z = w)R(2)R(w).
3. Fix any zp € C\spec(L). Since spec(L) is closed in C, it follows that its complement C\spec(L) is open. So

take z € C\spec(L) so close to z; that
2= 2lIR(0)] < 1.

Now we start from the Resolvent Identity

R(z) = (20 — z ) (
[/ = (20 — 2)R(20)]R(2) =R(z0)

By choice of z, we have
I(z0 — 2)R(20)|| = |20 — 2| R(20)[ < 1.

and hence, by Ex 3.6.1, the operator [/ — (z0 — z)R(zp)] has a bounded inverse given by the fundamental series
expanston.

R(z) =[I = (20 — 2)R(20)]"'R(20)

- l (20 — z)”R(Zo)”] R(z0)

18

0

(—1 )n(z _ Zo)nR(ZO)n+1 )

>
Il

18

n=0
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4. By choice of z from item 3, we have T, := (—=1)"R(z)"*" satisfying
I7al = [(=1)"R(20)™"[| < [R(20)|"*" < [R(20) 1z = 20| "

By Ex 35, we conclude R analytic on disks {7z € C\spec(L) : |z — z| < |R(20)||~"} for any z5 € C\spec(L). In

other words, R is analytic on C\spec(L), as required. O

Proposition 8.12 (Spectrum is Nonempty). The spectrum spec(L) of any bounded linear operator L : L — L
on a Banach space L is nonempty.

Proof. Suppose the contrary. Then, the resolvent R is defined on the entire C and is thus is an entire function.
Also, for any |z| > ||L||, we have

Rz)=zl-L)"=[z(0l-z"")]"=2z""0-2z""1)"".

As 7z — o0, note 77! — 0, 77l — 0, (/| —z7"L)~" — / and hence R(z) — 0. This shows R vanishes at 0,
and in particular, must be bounded. Liouville’s Theorem thus implies R is a constant function.

However, J
LR =l D~ olo(zl—1)" = —(z21 = L)2 #£0,
z
a contradiction. We conclude spec(L) # . O

Proposition 8.13 ([Con85] VII.3.8). For any bounded linear operator L : L — L on a Banach space L, the limit
lim |L7]"V/" exists and equals p(L).
n—+00
Proof. Let G :={zeC:z7"e C\spec(L)} U {0}, and define
f:G\{0} - B(L), z—(z"1—0)"".

As } — o, note (/| —A~"L) — I, A=" — 0 and hence (Al — L)™' = A2="(/ = A="L)~" — 0. This shows f(z) — 0
as z — 0, and hence 0 is a removable singularity. By defining f(0) = 0, we have f analytic on G.

Take its power series expansion for |z| < | L]~
o0
f(Z) = (2_1 — L)—W _ [2—1(/ _ ZL)]—W _ Z(/ _ ZL)—1 -5 Z nyn
n=0

The largest radius of convergence for this power series is

R =dist(0, 8G) = dist(0, spec(L)™"),  spec(L)™" = {z7": z € spec(L)}.
=inf{|z| : 27" e spec(L)} = p(L)~".

On the other hand, by Sarig Exercise 3.5, we have ||L"| = O(R™"), that is,
[L"| < CR™",  for some C > 0.
This yields R~" = C="(|L"|"/" for every n > 1, and hence

p(L) = R~ = limsup | L"]"/".

n——+00

Now if ze C and n > 1, then
=" =2 =) A A ) = (T A T+ LT (2 - ).

If (z"/ — L") is invertible, then (21 — L")~ (2"~ + 2"=2L 4+ --- + L") is the inverse of (z/ — L). For any
z € spec(L), we have (z/ — L) non-invertible, and hence z"/ — L" = z"(/ — z="L") is also non-invertible for all
n = 1. This implies

70 = |2 <1, vz e spec(l),
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and hence |z| < |[L"]'/". We conclude

p(L) < liminf [L"]"/" = limsup L]/ = p(L),

n——+40oo

and hence the limit U:Lnao L7/ exists and equals p(L). O

Lemma 8.14 (Fekete's Subadditive Lemma). /f a sequence {a,},>1 € R is subadditive, i.e,
C’n+m<an+amr vmrn>1v

then the limit lin+1 a"/n exists and equals inf,1 a"/n.
n—-+0o0

Proof. Let L := inf,>1 a,/n and fix L’ > L. Choose k = 1 with ax/k < L’. For n > k, by Division Algorithm,
there are integers p, = 1 and g, € [0, kK — 1] such that n = p,k + g,. By subadditivity, we have

an = apnk"!‘(h < Pndk + GQH'

Dividing both sides by n yields
O  Pok Ok Ga,
n n k n

pnk 1 % < max{a;:i=0,--- k—1}

z , . — 0, and hence

As n — 400, we have

L< tim 2<% 0 v s
n—+w0 N k

The assertion follows. O

Corollary 8.15. For any bounded linear operator L : L — L on a Banach space L,

_ i nl/n _ ny1/n
p(L) = lm L7V = inf JL7]".

n—+00

Proof Since |[L"T™|| = |L"L™| < |[L"||IL™]|, it follows that log]||L"] is subadditive. By Fekete's Subadditive
Lemma, we have
n n
o loglt] loglin)

n—-+a0 n n=1 n

Exponentiating both sides yields lLT IL7V/" = inf,=q | L"]/", as required. O
n——+0o0

Theorem 8.16 (Separation of Spectrum). Suppose the spectrum spec(L) of a bounded linear operator L : L — L
on Banach space L admits a decomposition into the disjoint union

Spec(L) = LinULout
of two compact pieces Ly, and Loy, and y is a smooth closed curve in C\spec(L) with L, inside and L
outside. Then,

1. The operator defined by line integral
1

27Tl v

(zI —1)7"dz

is a projection, i.e, P? = P. Hence, L = ker(P) @ Im(P).
2. PL=LP. So, ker(P) and Im(P) are both L-invariant.
3. spec(Llim(py) = Lin and spec(Llier(p)) = Lout-

A proof is given in Sarig's Appendix, and we will prove it later.
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Definition 8.17 (Eigenprojection). The projection operator P = % SV(Z/— [)~'dz is called the eigenprojection
OfZ'm.

Corollary 8.18. When L has a spectral gap with representation L = AP+ N, the eigenprojection Py of L, = {A}
equals P.

Proof. Note A is a simple eigenvalue of L : £L — L with one-dimensional eigenspace E(A) = Im(P), and
L = ker(P) ® Im(P). We claim Im(P;) < Im(P).

Suppose not. Then, (/—P)Im(P,) # {0} is a closed nontrivial L-invariant linear subspace. Now p(N) < |A] im-
plies A ¢ spec(Nler(py) = spec(Llier(p)); it then follows from (/—P)Im(P,) < ker(P) that spec(L|—pym(r,)) S
spec(Llwer(py) and hence

A ¢ spec(L]—pyim(p,))-

On the other hand, note spec(L|(—pyim(r,)) S spec(L|in(p,))- But san@
@ # spec(L](-pym(p,)) = spec(Llin(py) = Lin = {A},

we must have spec(L|(/—pyim(p,)) = {A}, a contradiction. We conclude Im(P;) < Im(P). But since spec(L|inp,)) =
Lin = {A}, it follows that Im(P,) is nontrivial and hence must coincide with the one-dimensional space Im(P).

Now that P and P, are both projections to the same space E(A), we conclude P = P), as desired. O
More generally, if P = P, Q> = Q and Im(P) = Im(Q), then P = Q.

Indeed, any v € L can be written as
v=Pv+ (=P,

where Pv e Im(P) and (/ — P)v € ker(P). This shows £ = ker(P) + Im(P). To see the sum is direct, take any
v e ker(P) nIm(P). So Pv =0 and v = Pu for some u € L, hence v = Pu = P?u = P(Pu) = Pv =0, We
conclude £ = ker(P) @ Im(P). But the same argument for Q yields

v=0Qv+(l—0Q)v,

where Qv € Im(Q) = Im(P) and so we must have Pv = Qv because the sum is direct (the representation is
unique). This shows Pv = Qv for any ve L and so P = Q.

8.3 Analytic Perturbation Theorem

Theorem 8.19 (Analytic Perturbation Theorem). Let U 3 0 be an open subset of C and L: U — B(L),z— L,
be an analytic family of bounded linear operators L, : L — L on a Banach space L. If Ly has spectral gap,
then there is some € > 0 such that L, has spectral gap whenever |z| < €. Moreover, there are A,, P,, N,
analytic on {z € C : |z| < €} such that

1L, = AP, + Ny,
2. P, e B(L) with P> = P, and dim(Im(P,)) = 1;
3 P,N,=N,P,=0;

4. p(N;) < |A,| — « for some k > 0 independent of ze {ze C: |z| < €}.
Proof. Since Ly has spectral gap, we have
spec(lo) = {Ao}OT, T {z:]] < p(Lo) = lhol}.

Take a small circle y < C\spec(Lg) with Ay inside y and L outside y.
Step 1. There is some € > 0 such that y € C\spec(L,) for all z with |z| < e;.

"2The spectrum spec(L) must be nonempty, because otherwise the resolvent R : z — (z/ — L)~ would be defined on C, and so is
an entire function. It is not difficult to show that R vanishes at co and so is bounded; Liouville's Theorem implies R must be constant,
contradicting the fact that R has nonzero first derivative R’ # 0. For more details, see [Con85] Theorem VII.3.6.

69



Indeed, by choice of y, we have that &/ — Ly has a bounded inverse for all & € y. Ex 3.6.3 says that having a
bounded inverse is an open property in B(L), that is, if F has a bounded inverse, then so does F + G, provided
| G| sufficiently small. This implies that

AN:={(&2)eCxC: (& —L,) has a bounded inverse}

is an open neighborhood of compact set y x {0}. By compactness, we produce a uniform size ¢; > 0 for which
y x{z:|z| < e} €A as desired.
Step 2. For any |z| < e,
1
Pi=—— | (&= L,)7'd&

T 27 y
is a projection and P,L, = L,P,. Moreover, there is €, € (0, ¢1) such that P, is analytic on {z : |z] < €2}.
Indeed, fix z with |z] < €. Step 1 gives y < C\spec(L,).

If spec(L,) does not intersect the region inside y, then (&/ — L,)~" is well-defined and hence analytic on a
region in which y is contractible; we thus conclude P, = 0 by Ex 3.3. Then, trivially we have P? =0 =0 = P,
and P,L, =0L,=0=L1,0=1[,P,.

If spec(L,) intersects the region inside y, then Separation of Spectrum Theorem yields P? = P, and P,L, =
L,P,.

On {z:|z| < &}, the family P, is well-defined and hence analytic.
Step 3. There is €5 € (0, €2) such that dim(Im(P,)) = 1 for all |z| < es.
We say P, Q € B(L) are similar if there is a linear isomorphism 7 of £ such that P = 710

Kato Lemma: If projections P, Q € B(L) have |P — Q| < 1, then they are similar to each other.

A

By continuity (from analyticity) of P,, there is some €3 € (0, €2) such that |P, — Py| < 1 whenever |z
3. Kato's Lemma then yields linear isomorphism i, of £ with P, = s, "Pyxr, and hence dim(Im(P,)) =
dim(Im(Pp)) = 1.

Step 4. Definition of A,.

Take |z| < e3. Since P,L, = L,P, from Step 2, we have L(Im(P,)) < Im(P,). Since dim(Im(P,)) = 1, it follows
that linear map
L, - Im(P,) = Im(P,)

takes the form f — A,f for some A, € C. This shows [,P, = A, P,.
To see A, depends analytically on z, take any f € £\ ker(Pyp). By Hahn-Banach Theorem, there is some ¢ € L*
such that @(Pof) > 0. By continuity (from analyticity) of P,, there is €4 € (0, €3) such that

p(P,f) >0, V|z| <e.

Now the expression
) = Ll
G
shows that A, is analytic on {z : |z| < es}.
Step 5. Definition of N,.
Define N, := L,(/ — P,). Note it is analytic on {7 : |z| < €4} because both L, and P, are analytic there.

Since PZZ =P, and L,P, = P,L, from Step 2, we have

P,N, = P,L,(I—P,)=P,(I—P,)L, = (P, — P})L, =0

and also
NP, = L,(I = P,)P, = L(P,— P?) =0.
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From [,P, = A,P, in Step 4, we deduce

L=L—-LP +LP =L(-P,)+L,P,=N,+AP,.

It remains to show p(N,) < |A,|. Recall
p(L) = lim /0] = inf /7]
n— n=1

Fix any 0 > 0. Applying the above estimate to Ny yields some n = 1 so large that

{/ING ]l < e°p(No).

Since z — N, is analytic on {z : |z| < e} from Step 5, it follows that z — {/|NZ]| is continuous there. So
there is €5 € (0, &) such that

N < 2 ING | < e®p(No),  VY|z| < es.

By continuity (from analyticity) of z +— A,, there is € € (0, €5) such that

A, > e*5|)\0\, V|z| < €.

Pick & > 0 so small that e*p(Np) < |Ag|. Then, we have

p(Nz) < /N2 < e p(No) < e™°lAo] < |A], V2| < 6.

Up to further shrinking €5, we can make k := min|,|<¢, [4,| — e7°[Ao| > 0. O
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9 Herbert: Conditional Expectation

Definition 9.1 (Conditional Expectation). Let (X, B, ) be a probability space, let D = B be a g-algebra and
let f € L'(B). The conditional expectation of f with respect to D is the function E[f|D] € L'(D) such that for

all D € D we have
J fdy = f E[f|D]du
D D

Theorem 9.2 (Existence and Uniqueness Of Conditional expectation ). Let (X, B, u) be a probability space, let
D < B be a a-algebra and let f € L'(B). The conditional expectation E[f|D] € L'(D) exists and is unique.

Proof. First we prove the existence, define the complex measure

v:D—C, D>—>deu.
D

Remark 9.3. For every D € D. It is easy to check that this is indeed a complex measure. In fact: We have that
V@) = | rdu=o,
%]

as v is a measure. Likewise let {E} be a countable disjoint family of sets. Then

v(UikEr) :J

uEk

0
fdy = IZ f1lg dy.
k=1

Now let .
gn = Z f ]]‘Ek"
k=1

then we have that g, — f y—a.e. and |g,| < f € L'(B) so we can write
o'} n n o0 0

fZ flg dy = f[lm gndy = l'tmfgndu = llmJZ fledy=Llim )] ff Ledp = )] f fduy=> v(Ex).
k=1 " " S - =19Ex k=1

This is finite and absolutely convergent as §|f|dy < o0 and hence v is a complex measure.

Moreover if D € D is such that (D) = 0 then v(D) = 0 as well. Then we have v « p, the measure v is
absolutely continuous with respect to measure p. Therefore we can apply the Radon-Nikodym theorem to find

d
a derivative g = Ve (D). Then for every D € D

dy
J gdy = v(D) :J fdy.
D D

Thus g is the conditional expectation of f with respect to o-algebra D.

Now, to prove uniqueness, assume that g, h € [ (D) are both conditional expectations of f. Then for each

D € D we have
Jgdu=J fdu=f hdu
D D D

fD(h —g)dpy =0.

If the following set {x € X : h(x) — g(x) # 0} has positive measure then without loss of generality the set
{x € X : h(x) — g(x) > 0} has positive measure. Hence there is some € > 0 such that the set D, = {x €

this implies that
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X h(x) = g(x) > €}. has positive measure. Note that both h and g are measurable in D we conclude that
De={xeX:h(x)—g(x)>e}={xeX:(h—g)(x) > e} eD and hence

0<eu(D) < [ (h—g)du=0
which is a contradiction. O

Proposition 9.4. Let (X, B, ) be a probability space, let D = B be a g-algebra and let f € ['(B) be real
valued. The conditional expectation E[f|D] satisfies

inf f(x) <E[fID](y) <supf(x) as.
xeX xeX

Proof. Fix e > 0 and let D = {y € X : E[f|D](y) < infyex f(x) — €} € D. We have

) inf f(x f fdy = J [f|D]du (D)(Xlen)f( f(x) —e).

XEX

Then we have ep(D) < 0, and thus p(D) = 0. Since € > 0 was arbitrary we conclude that almost surely
infyex f(x) < E[f[D](y).

O

Lemma 9.5. Let (X, B, 1) be a probability space, let D = B be a a-algebra and let f € L'(X, B). Then almost
everywhere

[E[f | DI < E[|f] | D] (10)

Proof. Asume that f is real value. Define A = {x € X : E[f|D] > 0} and B = {x € X : E[f|D] < 0}. Let
D € D the set of points where the inequality (10) fails. Let D* = D n A and D~ = D n B. Note also that
D= D% v D™, then

fumuoww:j|MﬂDwm+j|MHDwu by D= D+ L D
D D+ D—

fm E[f | D]du‘ + UD E[f | D]du'
fm fdu' +
<| i | i

~ [\ B0 D+ B4 | DY
D+ D=
~ | B0 | Dam

D

Since D is the set of points where the inequality fails, we conclude that p(D) = 0 as desired. O

J fdu’ by definition of Conditional Expectation

Proposition 9.6. Let (X, B, i) be a probability space, let D < B be a o-algebra. The operator
E[.|D]:L'(X,B) — L'(X,D),

(s continuous.
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Proof. The idea is to show that the norm of the operator is 1. Let f € L'(X, B) and by Lemma we have

17 | D) = [ 1217 Dlidn < [ 011 Dlo = [ 111 = 1]
X X X
O
Now if f € L?(X, B) one can use the Hilbert space structure to give a different characterization of the conditional
expectation.
Theorem 9.7. Let (X,B, 1) be a probability space, let D = B be a g-algebra. Consider P : L*(X,B) —
[?(X, D) be the orthogonal projection, then for every f € [?(X,B) we have E[f | D] = Pf.

Proof. By definiton of orthogonal projection, for any function g € [%(X, D) we have (f — Pf, g) = 0. Therefore

f Pfd;J:J 1pPfdu
D X
=(1p, Pf)

=(1p, )
:J ]].Dfd/l
X

_ f du,
D

and hence Pf = E[f | D] as desired. O

10 Herbert: Kac's Lemma

Let M be the phase space of a physical system, for example let M include all possible states of molecules in a
box. The g-algebra B represents the collections of observable states of the system and 1(A) is the probability
of observing the state A. If f gives the discrete time evolution of the system, it is reasonable to expect that if
the system is in equilibrium, f preserves the measure p, that is, the probability of observing a certain state is
independent on time. Consider now an initial state in which all the particles are in half of the box (imagine of
having a wall which separates the box and then removing it). By Poincaré Recurrence Theorem, almost surely,
all the molecules will return at some point in the same half of the box. This seems counter-intuitive. In reality,
this is not a paradox, but simply the fact that the event will happen almost surely does not say anything about
the time it will take to happen again (the recurrence time). Indeed, one can show that if the transformation is
ergodic, the average recurrence time is inversely proportional to the measure of the set to which one wants to
return.

Let again f : M — M be a measurable transformation.and p a f-invariant finite measure. Let £ < M be any
measurable set with p(E) > 0. Consider the first-return time function pr : £ — N u {0}, defined by

pe(x) =min{n =1:1"(x) e E}

whenever the set in the right-hand side is non-empty, otherwise pg(x) = 0.

Now we will show that this function pr is integrable. To this end, we introduce

Eo={xeE:f"(x)¢ E forall n >1}
Ef ={xeM:"(x) ¢ E forall n > 0}.

So, Eg is the set of points of £ that never return to £, and Ej is the set of points of M that never enter in E.
Note that p(Ep) = 0 by the Poincaré recurrence theorem.
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Theorem 10.1 (Kac). Let f : M — M be a measurable transformation, y a finite f-invariant measure and
E < M a subset of positive measure. Then, the function pg is integrable and

L pedy = (M) — p(EF)

Proof. For each n > 1 let us define
E,={xeE f(x)¢E . "' (x)¢Ebut f"(x) e E}

E¥={xeM:x¢E, . " "(x)¢E butf"(x)eE}
This means that £, is the set of points of E that return to E for the first time precisely at the moment n.
En={xeE:ipe()=n}=Enf™E\ (] E pe'({n}) = £
1<k<n—1

and E} is the set of points that is not in £ and enter in E for the first time at the moment n. These sets are
measurable since E is measurable and so the function pg is measurable.

Afirmation: for n > 1 the sets £, and E¥ are pairwise disjoint. In fact, let £; and E; with i < j and
cosnider £; N E; # (. Take x € E; then x € E, f*(x) ¢ E for 1 < k < i—1 and f/(x) € E. Observe that
fi(x) = P={(f(x)) € E, then f'(x) € Ej_;, this means that f'(x) € E, f'(x) ¢ E for i+1 < (< j—1. But
x € Ejand i < jthen f'(x) ¢ E. Therefore the sets {£,} are pairwise disjoint. The proof that £ n £ =
and Ej-* N E; = & are similar

So

Then
p(M) = p(EF) = > ((Eq) + u(EF)), (11)

But the measure is finite, then p(E,), (E%) — 0 when m — co. Now observe that
fUEF) = Ef U E,q forevery n.

In fact, y € f~1(E¥) then f(y) € E¥ this means that the first iterate of f(y) that belongs to £ is f"(f(y)) =
f7+1(y) and that occurs if and only if y € £* or else y € E,41.

So, given that p is invariant, we have
W(E) = u(T~(E1)) = w(EX, )+ u(Ensr)  for every n.
Observe that

/J( /:k+1) = /J(E/T-q-z) + /J(En+2)
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then
IJ(E:) = U(E:-q-z) + U(Er)+2) + /J(En-H)
Now,
H(ET ) = p(Efys) + p(Epss)
so,
/J(E;k) = U<E:+3> + U(Er1+3) + IJ(En+2) + /J(E/7+1)~
Applying this relation successively, we find that

m

pEF) = p(EX)+ > p(E)  for every m > n.
i=n+1

Taking the limit as m — oo we find that

E) = ) w(E). (12)

O

Remark 10.2. When the system (f, i/) is ergodic, the set £; has zero measure. Then the conclusion of the Kac
theorem means that

1 _ (M)
@L”d“ = W(E)

for every measurable set £ with positive measure. The left-hand side of this expression is the mean return time
to £. The mean retunr time is inversely proportional to the measure of £

Remark 10.3. Consider p probability measure on M, let £ be as in the statement of Kac's Lemma. One can
define, by restriction to E, an induced o-algebra Br given by

Be ={AnE:AeB},
and an induced measure pg on (E, Br) given by restriction

_ u(AnE)

for all Ae B.
u(E)

pEe(A)

This define a probability measure (conditional measure) pg on £, so that pe(E) = 1. Then Kac's Lemma says
that

1 1
Elpe | E] = JEPEdNE = i(E) JEPEd/J = m

So
1

Thus, the average return time to £ is 1/u(E).
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11 Sarig L4, Application to Central Limit Theorem

Theorem 11.1 (Central Limit Theorem). Let (X, B, u, T) be a mixing, probability preserving dynamical system.
Suppose T:L—L hasa spectral gap on a Banach space £ < L'(y) containing the constant functions, with
norm | - | satisfginﬂ

Ifgl <Ifllgl. & [-1=1-lo
Let ¢ € L be bounded with §dy = 0. If the Cohomologicam equation ¢ = v —vo T has no solution v e L,
then there is 0 > 0 such that

1 n—1 )
% Z ¢1 o Tk dist. /\/(0, UZ);
k=0

n—+00

in other words, for any interval [a, b], we have

13 1 b o
xeX: — o Tr(x) e [a,b] b 125, J‘e_t/gdt
“{ vz el ]} Varo |,

Remark 11.2. 1. It seems that the mixing condition is unnecessary. Note T,u = p implies 71 =1 and

hence 1 is an eigenvalue of T : L' = L' with the one-dimensional space consisting of the constant
functions {Const} < E£(1) contained in the eigenspace £(1) corresponding to eigenvalue 1. Then, the
spectral gap condition on T:L — L, where £ 2 {Const}, implies that 1 is the dominant eigenvalue and
it is simple. However, it is unclear whether or not the spectral gap property implies mixing?? According
to Exercise 1.5.4, the condition that 1 is the only eigenvalue on the unique circle and 1 is simple (not
necessarily spectral gap) only implies weak mixing.

2. The Banach space £ must contain the constant functions because the proof requires an operator T,
defined on £ and apply it to 1 € L.

It also seems to make sense to require further that £ be a Banach algebra (closed under multiplication);
only then can we guarantee fg € £ for any f, g € £, and for any ) € £ we have 'Y € L; any Banach
algebra must satisfy ||fg| < [f]|lg]l. Sarig himself says so too https://www.youtube.com/watch?v=
ApTbp8FtFJg

3. The observable ¢y € L is assumed to be M — R in order for the convergence in distribution to make
sense.

s being real may also imply that 7, : f — ei™f has norm [ ?}H < 17?7 Not sure how to prove this though.

11.1  Some Probability Theory
Definition 11.3 (Distribution Function). Let X be an R-valued random variable. Its distribution function
FX ‘R — [0, 1]

is defined as
Fx(t) =P[X < t].

Definition 11.4 (Convergence in Distribution). Let X,,,n =1,2,--- and Y be R-valued random variables, not
necessarily defined on the same probability space. We say the sequence X, of random variables converges in
dist.

distribution to random variable Y, written X, Y, if

n— 400
Fx. (1) =P[X, < {] =5 P[Y < (] = Fy(t)  at all continuity points ¢ of Fy(t);

in other words, the convergence holds for all t € R where Fy(t) =P[Y < t] is contmuouslﬂ

3For intance, the Lipschitz functions on [0, 1] with | - [, norm.

"For an explanation of the name ‘cohomological equation’, see https://amathew.wordpress.com/2010/07/17/
the- cohomological-equation-for-dynamical-systems/ and https://terrytao.wordpress.com/2008/12/21/
cohomology-for-dynamical-systems/

PWe only require the convergence for continuity points to allow convergence in distribution of X, = 2 — % to Y = 2, where the

convergence Fy, (t) — Fy(t) fails at t = 2, a discontinuity point of Fy(t).
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Definition 11.5 (Characteristic Function). The characteristic function @x(t) of a R-valued random variable X
is defined as

ox(t) = E[e'™].

Theorem 11.6 (Lévy's Continuity Theorem). A sequence of R-valued random variables X, converges in distri-
bution to an R-valued random variable if and only if

ox, (1) =55 (1), VieR.

11.1.1  Berry-Esseen Smoothing Inequality

Sarig states an inequality, which he then proves in the Appendix, and then uses it to prove a special case of
Lévy's Continuity Theorem, where Y = N(0, 0?). See Exercise 4.1. This special case suffices for proving our
Central Limit Theorem.

11.2 Nagaev's Method

We now prove the Central Limit Theorem, following the functional-analytic Nagaev's method. Write
Yp =+ oT +-+hoT "
By Lévy's Continuity Theorem, it suffices to show convergence of characteristic functions, namely,
9, (1) = E[e!v7%] = J el Vildy L2EE, 0207 g0 (1), YEER. (13)
d ¥

Define operators
Tif = T(e"r),

where t will be taken real for now, but later we will extend it to z € C to exploit Analytic Perturbation Theory.
Proposition 11.7 (Exercise 4.2). T = ?”(e‘wn f).

Proof Base Case n = 1 is clear. Now assume for n — 1 and show for n.

—1

>

~n

B =TT = T (T (@)

=T (?[ewﬂ?”_z(ew””f)]) . using Ex 12: T[(fo T)g] = f(Tg)
:’fn[eitgLAoT””eirw”_q f] _ ’fn[emp,, f]

Note

f 7A',”]ldp = J ?”(e”w”)du = J el o Tdy = f plthn — E[e”w”] =y, (t).
X X X X

To prove li we need to study the behavior of @u, (t) = E[e“ﬁ%] = f;n]ldu as n — +00 via analytic
NG n
perturbation theory.

Claim: z+— T, is an analytic family.

Indeed, by continuity of T, we obtain the expansion

PR s [ (izg)" s N\ (2"
LE=T(ef)=T(>] fl=Tr+> TMjf,  where My : f — Jf.
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Since [|Myf| = [f] < []l|[f], it follows that My is a bounded linear operator with [|My| < ||¢/|, and hence

ITMg < 1T Il

This implies the series >.°"_, (i;!)” ?/\/Id’; converges in || - || norm on C, and hence 7, is analytic on C, according
to Ex 3.4.
Proposition 11.8.

7’22/ =i7/:ZM¢

n!

Proof. It follows directly from the expansion T,=T+ >, (i2)" ?/\/IZ that

n—1

f’:i%?/w":i iw?/wM M, = i i(iz)”?M" My = iT.M
g nl v (=1l ¥ v ) e T

n=1

~ I A~
The second derivative 7, is calculated the same way. For (Tzn)', note

~n

~ roA ~ ~ ~
(Tz )/ _ (Tn(etzw,,)) _ Tﬂ((elzdjn)/) _ Tn<e1z¢,,[M%) _ iT”(elZ%Mwn) _ iTZ/7/\/I¢n,
The second derivative (fzn)" is again calculated the same way. O

11.3  First Derivative A, at z =0

By assumption of the Central Limit Theorem, 7A'0 =7 = AoPo + No has a spectral gap with A = 1 and
Pof = Sfdu, according to Ex 2.3 and Ex 3.8.

By Analytic Perturbation Theorem, there is an € > 0 such that for any |z| < ¢, the analytically perturbed
operator T, also has a spectral gap:
Tz = )\ZPZ + Nz:

where P2 = P,, dimim(P,) =1, N,P, = P,N, = 0, and

p(N,) < |A,| =k,  for some uniform « > 0.

Differentiating equation fZPZ = AP, yields
TP, + TP = XLP, + 1P,
Left multiplying by P, yields

Pz:r\z/Pz"_’Dz/T\z’D; :Pz/\/ZPz+ ’Dz)\zP;
P, TP, + J,P.P. =).P, + ,P,P. using P,T, = AP, and P = P,
P,T. P, =XP,.

Plugging in z = 0 and applying to 1, we have

Xy = MPol = PyTo Pyl = Po(iToMy1) = iPo(Tow) = zJ Tdy = [f Yy = 0.
X X
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11.4 Second Derivative A at z =0
Claim: }"(0) = — n_lingoc L5, () ?dp.
Indeed, first we differentiate equation fznPZ = A7P, to obtain
(TP + T (P) = ()P + 1P
Differentiating again yields
(TP + 2T (P + T (P)" = ()P 21 (P + A (P2)".
Left multiplying by P, yields

P, (A”)”P +2P,(T,Y(P) + P,T, (P =P,(A)' P, + 2(A0) P,(P,) + X' P,(P,)"

P
P.T.")"P +2P(f Y(P) + A2P.(P.)" =Pa(A0)" Py + 2(A2) Po(P,) + XeP.(P.)"  using P.T,"
Y P,

'P, + 2P, (T )(PZ)’

P.AT, (A2)"Pz + 2(22) P(P.)'.

Evaluating at z = 0 yields
Po(To')"Po + 2Po(To ) (Po) =Po(A3)" Po + 2(A)' Po(Po)’
Po(—To M3, )Py + 2P (i7" My, ) (Po) =Po(4§)" Po + 2(48) Po(Po)'-
Note

() =2 A,
(A0)" = 2, + 02

and by evaluating at z = 0, we have

(A8 =nXy™' X = nAy =0
(A0)" =n(Ag~ ") A+ nAg G = nAl.

Plugging these into the previous equation, we continue
Po(—To M2, )Po + 2Po(iTo My, )(Po) =nAjPo.
Applying to 1, we have
APy =Po(—To M2, )Pol + 2Po(iTo My, )(Po)'1
1 = (~RTa () + 2P Ty (o)1)

- f P01+ 26 f 7" [ (Po)' L

n

__ % L(qJn)Zdu + 21% L W (Po) 1dy

n—1
=— % L(w,,)zdu + 2i L((Po)’]l)% ;0 Yo Trdy.

By Birkhoff Ergodic Theorem,

1 n_w n—
- Z YoTk ﬂf Ydy =0, p-ae
L X
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Since |1 ZZ;& Yo TK| < |y, it follows from Dominated Convergence Theorem that

n—1

1 1
n __ _ . o 2 . . / o k
Ay = ”_QTOO n JX(QZJH) du + ZLnETOCJX((PO) ]l)n gzowo Tdy
1 1 n—1
— 1 o 2 ; ! : o k
—— lim - L(%) du + zlL((Po) 1) lim - ;:0; Yo Thdy
] )
= HETOOELW’”) du

as claimed.

We now know the Taylor coefficients up to order 2:

n—+0oo N

A=1-— %0222 +0(%), o= \/ lim 1J (Yn)2dp.
X
Proposition 11.9 (Green-Kubo Formula, Ex 4.4).
o0
o= [ wawr2 [ oo
X = Ix

Proof. By definition of g, we have

Note for d = |k — (|, by invariance po T~' = 1, we have

f (o T (o Tdy = f (o Thdy
X X

This implies

Q
I

' 1 n—=1
nETm - (n J-X YPdy + ; 2(n—d) JX s Td)d/J>

n—1
2 - n—d d
| o tim 332" | wtwo T

d=1

N . N o Td
wa;zww T)dp,

as desired.

11.5 Limit of Characteristic Functions (piu%(t)

Fix t € R. By previous analytic perturbation arguments, for n so large that ﬁ < €, we have

i i

=\ (1 +f (P — Py)ldy + Al”J /\/"(]ld,u)
NG 5% ~n Vo xoo oV

s (14 0P = Pul) + OBZIING D) wsing 1> -1

w (1) =E[e' Vit :J 7. "1d :J (M, P 1+ N", Il)d
02, (1) =E[S] = | T "1dy= | (40, P14 N7 1) d
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By continuity of z — P,, we have HP;\[ — Py =E25 0. Since [‘LTOO IN2IV/7 = p(N,) < || = k, it follows
n n—
that

‘/\/”,
|)\_fn|HNLH< \ﬁn n—-+00 0
IV AR ’ [

NG

With spectral gap, the long term behavior of 71 is always dominated by the dominant eigenvalue. If we
relax the hypothesis to quasi-compactness, then maybe we can recover a version of the Analytic Perturbation
Theorem, and need to adjust the dominating behavior accordingly by summing over the multiplicities??? cf.
Gouézel

We continue

¥n t =)\n[ /I /I
9 (1) =4 (1 + o(1)
1 t

= 1= 30 ouevan | (4o

= [1 - #ﬁ + O(n—3/2)y (1+ 0(1)).

The scaling by \% is crucial to being able to see the limiting behavior.

By L'Hdopital's Rule, we have

a’t? " a’t?
lim log [1 ——n"4 O(nB/Z)] = lim nlog [1 ——n" 4 O(ns/z)]
©

n—+00 2 n—+ 2
o2 -2 —5/2
202y 32 S0
_ llm log [1 - UT” + O(n / )] _ [lm 1—”2212 n*W_A,_O(n*S/Z)
N n—-+00 n—1 B n—-+00 —n—2
. oZZrZ + O(n*W) o212
n—to0 | — CEp=1 4 O(n=3/2) 2
This shows
0—2{.2 1 3 2 " n——+0o0 UZI
1 7?,7, +0(n?) e~ 2
and hence

11.6 Positivity of o
It remains to show ¢ > 0. This will come from the non-solvability of the cohomological equation
Yy=v—vol. (14)

For a contradiction, suppose o = 0. We will then construct a solution v € L to the cohomological equation

([T@. Take

e}
U=+ Z Ty,
n=1
where the sum converges in | - | norm because Py = §dy = 0 and so

=n . n n exp.fast . . ni1/n _ _
1701 = 1Nl < INGII) 255 0, using lim [NG]'/" = p(No) < Jo = 1.
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By construction, we have
0
Y=u—Tu, & Tu=>T"¢
n=1

From Green-Kubo Formula, we derive

0
ozazzf Yrdu+2 )]
X

n=1

0
=J Yrdp + ZJ Y Z T"¢ydp by Bounded Convergence using | - || = || - |1
X

n=1

[ v = [ wau 22 [ o

=J (u— ?u)zdu + 2‘[ (u— ?u)?udu = J (u— ?u)(u —Tu+ 2?u)du
X X X
:f (u— /T\u)(u + /T\u)du = f u? — (?u)zdu = f u’dy — J (?u)zdu
X X X X
=J ?(uz)du — J (?u)zdu using J?gd,u = Jgdy
X X
:f ?(uz) o Tdy —f ((?u) o T)’dy  using invariance fgdu = Jg o Tdy
X X
:j E[v’|T~'B] = E[u| T~ "BPdy  byex12 (Tg)o T =E[g|T 'B].
X
Jensen's Inequality for Conditional Probabilities implies
E[v?|T~'B] = E[u]T~'B)*.
Together with the above equality, we conclude
E[u’|T~'B] = E[u|T~"'B]*.
But this equality holds only when v is T~'B-measurable and hence
u=E[uT 'B] = (?u) of,
by ex 1.2. Putting v := —Tu, we have
(,Z/=u—?u=(7'u)07'—?u=—v07—+v,

contradicting the non-solvability of the cohomological equation in £. This shows ¢ > 0 and completes the
proof of the Central Limit Theorem.
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12 Gabriel — Sarig A3 Mixing and exactness for the Gauss map

Theorem 12.1 ((Martingale Convergence Theorem [), Bogachev Example 10.3.14.). Suppose (X,B,u) is a
probability space, and (F,),>1 is an increasing sequence of sub-o-algebras in B. Define F := o(|J,=1 Fn)
(the smallest a-algebra containing the union). If f € L' (u), then E(f|F,) — E(f|F) ae and in L.

Theorem 12.2 ((Martingale Convergence Theorem Il), Bogachev Corollary 10.3.17.). Suppose (X,B,u) is a
probability space, and (F,)n<o is a sequence of sub-c-algebras in B such that F,_1 < F, for all n. Define
F :=\,<oFn (the intersection of g-algebras is also a o-algebra). If f € L' (1), then E(f|F,) — E(f|F) ae.
and in L.

Let (X, B, u, T) be a probability preserving space.
Definition 12.3. We say that p is mixing if, for every A, B € B:

pAN T7(B)) — u(A)p(B).

Definition 12.4. If T is a (not-invertible) non-singular map, we say that p is exact if y(£) € {0, 1} for every
Ee(Nyen T "B

Remark 12.5. T~"B ={T~"(B); B € B}.
Proposition 12.6. If p is exact, then it is mixing.

Proof. By measurability of T, it follows that (77"B)nen is a decreasing sequence of g-algebras. By the
Martingale Convergence Theorem II, for all A € B:

E(Li|T7"B) > E (h( N T-”B> = B(L4/{@. X}) = u(A).

neN

So for all A, B € B:

u(AnT7"(B)) = J]lA (Igo T")dy = JE(1A|77”B)13 o T"dy

f“ Vigo Tdy + O (J [EQT~B) - (A)‘du> s p(A(B). 0
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Definition 12.7. The Gauss map T : [0,1] — [0, 1] is defined as follows:

0, x=0;
T(x):=
mod 1, x # 0.
X
Remark 12.8. Notice that % mod 1 is the fractional part of % Le, 1 mod 1 = %f [%J Sarig denotes % mod 1
by {3}

=
==
L=
[
[y

We will consider, on the space [0, 1], the Borel g-algebra B, and denote by m the Lesbesgue measure.

Proposition 12.9. The Gauss map has the following invariant probability measure:

1 1
du = n2 1 —I—de
This means that, for every B € B:
1 1
B = — | —
u(B) In2 Jg 1+ x *

This measure is called Gauss measure. Moreover, Gauss and Lebesgue measures are absolutely continuous
with respect to each other (i.e. they are equivalent).

Proof. Let [a, b] € B be an interval, and notice that:

w0l o)
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This union is disjoint, so:

- 1 & e A .
u( ([a,b])) = m; o T+ x X
1 & 1 1
1 [e0]
= ln—ZZ[Ln(a+n+1)fln(a+n)fln(b+n+1)+Ln(b+n)]
n=1
1 N
= leimZ[ln(a+n+1)—ln(a+n)—ln(b+n+1)+ln(b+n)]
—00

= LNUm [ln(@a+N+1)—n(a+1)=In(b+N+1)+In(b+1)]

[n2 N—ow
_ ln12[ln(b+1)—tn(a+1)+NLLmooln (M)]
= ln1—2[Ln(b+1)—ln(a+1)]
S )

This proves the invariance. To show that Gauss and Lebesgue measures are absolutely continuous with respect
to each other, we will prove the following inequalities for every B € B:

1 1
B) < u(B) < B).
In fact, for every x € B, we have%<1lX<1.Then:
1 1 1 1 1 1 1
=— | zdx<—= | ——dx= <— | 1dx=— )
202" B =0 2% S ), i B s 5z ), 1 ) =

Remark 12.10. If x € (0, 1), then x has a continued fraction expansion of the form:

X2 +
X3+"'

where each x; belongs to N. Moreover, it can be shown that x is irrational if and only if it has infinite continued
fraction expansion; and, in this case, the continued fraction expansion is unique. Observe that:

1
P
X
2 X3+"'

1
- =x1+
X

Hence, T(x) acts like a shift map, deleting the first term in the continued fraction expansion of x:

T(x) =
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Lemma 12.11 (Exercise 25). For each a € N, define

1
= 0,1
Vo (X) a1 x x € [0,1]
and their compositions
V01 ap, = VUn © © V01
a. Foranyfe L
~ 0
T'f = Z Vi [f O Vay e ay-
ai,,a,=1
b. There are constants C > 0 and 0 € (0,1) such that for any string a := (a1, ..., a,) of any length n =1,
we have
Va(x) = va(y)| < CO"|x — y].
¢. There is a constant H > 1 such that for any x,y € [0,1] and any string a := (ay, ..., a,) of any length
n =1, we have
Ve (X)
—— =1 < H|x —y|.
va(Y)
d. There is another constant G > 1 such that for any x € [0,1] and any string a := (a1, ..., an) of any length

n =1, we have
G m(v,00,1)) < V400l < Gm (1[0, 1)),

e. v4[0,1) are non-overlapping sub-intervals of [0, 1).

Theorem 12.12 (Rényi). The Gauss map is exact with respect to Gauss measure.

Proof. By the equivalence of Lebesque and Gauss map, it is enough to show that T is “exact” with respect to
Lebesgue measure m. For each a € N, let v, : [0,1] — [0, 1] denote the inverse branches v,(x) := alx, and
set, for every a = (aq,. .., ap), Vg i= Vg, 0+ 0V, . Define [a] := v,([0,1]). This is the set of all numbers
whose continued fraction expansion starts with a.

Rényi’s inequality: there exists C > 1 such that:

& mlalmlb] < mlo,b] < C - mlalm[b] Yo.b

Here, [a, b] denotes the set of all numbers whose continued fraction expansion stars with a followed by b. We
will also denote by |a| the length of a.

Proof of Rényi’s inequality.

J]l[g]]l[g] @) T|Q\ dm = f /f|£|]1[g] dm
(6]

mla, b]

f lvgldm  (by Exercise 2.5 a, because a # b = 1) 0 vy = 0 by Exercise 2.5 e)
[b]

f GE*'m[a)dm = GEF'm[a]m[b] (by Exercise 2.5 d).
(2]

Here a = Gt'b means G=' < a/b < G. Choosing C = G, we have then proved that:

1

Z-m[g]m[ﬁ] < m[a, b] < C- m[a]m[b]. -

Define, for each n € N, F, .= o ({[a]; |a| = n}). Then B = 0 ({J,.en Fn)- Standard approximation arguments
show that, for every a and B € B:

% - m[a]m(B) < m(a ~ T19/(B)) < C - m[a]m(B).
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We can now show exactness. Suppose B € (), T "B and m(B) > 0. For every n € N, there exists B, € B
such that B = T="(B,). Then, for every a with |a| = n:

1

m(B n[a]) = m(T7"(Ba) n [a]) = zm(By)m|a]. (15)
Remember that zﬂﬁ < % < Lan where 1 is the Gauss measure. So:
1
m(By) = 2u(By) = tn2u(B) = 5(B).

Then, by (T9) it follows that, for all a:

(B la) _ m(B)
mla] = 2C°

Moreover, we know that, for each n € N, F, = o ({[a]; |a| = n}). Hence (exercise):

m(B n [a])

L.
m[g] [a]

Em(]]-BLFn) = Z

la|=n

Therefore, E,(15|F,) = mz(g) > 0. But B =0 (J,enFn). so by the Martingale Convergence Theorem I:

lim B, (16|7,) = E(15/B).

Therefore 1g > 0 a.e, which implies m(B) = 1. O
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13 Future Exercises

1. Sarig Exercise 2.3.

Zheng has discussed a little of this in the 4th meeting on 27 Jan 2021, see Proposition The sticking
points are: (i) is the action of projection Pf = h{fdy uniquely determined? if so, prove it. if not,
provide an example of an alternative action. (ii) is the assumption |- |z = | - ||;» really necessary for this
proposition?

2. Exercise for Hennion’s Theorem. Show that it suffices to prove the case k = 1.
3. equivalence of weak and strong analyticity. Sargig A4

4. Separation of Spectrum Theorem. Sarig A5

5. Kato Lemma. Sarig A6
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A Lebesgue-Radon-Nikodym Theorem; a Special Case

In this subsection, we prove a special case of the Lebesgue-Radon-Nikodym Theorem, [Rud87] Theorem 6.10.
We follow an elegant proof due to Rudin based on Riesz Representation Theorem.

Theorem A.1 (Riesz Representation; [Rud87] Theorem 4.12). If L is a continuous linear function on Hilbert
space H, then there is a unique y € H such that

Ix={x,yy VxeH.

Another important ingredient in Rudin's proof is the fact that [ is a Hilbert space.

Theorem A.2 (L2 is Hilbert). Let (X, F, u) be any measure space, and let L*(u) denote the space of measurable
functions f : X — C for which

J|f\2dy < +00,

where two functions are identified when they coincide u-a.e. By Cauchy-Schwarz Inequality, {-,-) given by

(t9> = | 1500

defines an inner product on L*(11). Moreover, (L*(u),{-,-)) is complete and hence a Hilbert space.
Next, we state and prove a special case of the Lebesgue-Radon-Nikodym Theorem.

Theorem A.3 (Lebesque-Radon-Nikodym Theorem; Special Case). Let u1, A be two real positive finite measures
on measurable space (X, F).

(a) There is then a unique pair of real finite measures A, and As on (X, F) such that
A=A+ A, Ag<pu, ALy
Moreover, A, and As are finite.

(b) There is a unique h e L' (u) such that

ho(E) = L hdy, VEeF.

Proof. First we show the uniqueness of the decomposition
A=Aa+As, Ag <<y, A Lp.
If A= AL + AL is another such decomposition, then
p» A — A =X — A Ly
This implies A, — AL, = AL — A s the zero measure, and hence the decomposition is unique.

For existence, note
@=A+U

is another real positive finite measure on (X, F). Define
A P() - R, fHdeA.

Since the integral is linear, so is A. Also, A is bounded:

| _dex' < J\f|d/\ < f|f| .
1/2
<j|f| d(p) (fﬂd(p) by Schwarz Inequality

=[fl2(0 (X))
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Hence, A has a unique Riesz representation by some g € [*(¢):
ffcu = Jfgd(p, Ve l?(p). (16)

Part I. We show ¢g(x) € [0, 1] for ¢-a.e. x € X. Taking f = 17 with £ any measurable set in X, we have

0< AE) = f]lgd)\ - f]lggd(p < o(E).

This implies that

1
< ——— <1, 17
O<wwyL”¢< 17)

whenever ¢(E) > 0.

For a contradiction, suppose there is some interval [a — €, @ + €] such that [a — ¢, a + €] n [0, 1] = & and
(g7 '[a — €, a+ €]) > 0. Then, denoting £ = g~ '[a — €, @ + €], we have

‘w&yﬁw¢‘4_L@vL@‘“M4<¢&f“5_a

contradicting bounds (17). We conclude any interval [a — €, a + €] disjoint from [0, 1] must have (g~ '[a —
e,a+el])=0.

For every a € Q\[0, 1], there is some €, > 0 for which [a — €4, a + €] is disjoint from [0, 1], so

o(g7'[a— € a+e€]) =0, VYaeQ\0,1].

This implies

ol ' RO M =¢|g"| |J [a—eatel|]=0
aeQ\[0,1]

that is to say, g(x) € [0,1] for g-ae. x € X. Up to redefining g outside this full-gp-measure set, we may
assume ¢g(x) € [0, 1] for all x € X.

Part Il. Define sets
A={xeX:gx) <1}, B:={xeX:gx)=1},

and real positive finite measures
M(E)=AENA), A(E)=AIE nB).
Then clearly A u B = X and thus we have decomposition
A= Aq + As.

Rewrite the relation into § fdA = §fgdr +  fgdy
Jf(T —g)dA = Jfgdu, Vfe [%(p). (18)
Take f = 1p, and by (T8) and definition of B, we see
0= (1= gn= | giu=u(B)
B B

This implies As L p.

Part Ill. We show existence part of statement (b), which will imply A, « p. (Alternatively, one may show A, « p
directly.) Take any measurable set £ < X and define for each n e N

R0 =14 () + -+ (g0))"] L.
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Note each f, is bounded and hence [?(¢). By relation applied to f, and the identity
(1 7)()('] +X+...+X”) =1 7Xn+1’

we obtain

Lm — (g(x))" " )dA(x) = J fo(1 = g)dA = j fogdy = L [+ g(x) + - + (9(x))"] g(x)dp(x).

Since g =1 on B and p(B) =0, we have

f <17<g<x>>”“>dx<x>=f [+ () + -+ (g(0))"] g()du(x).
ENA

EnA

For any x € £ n A we have g(x) € [0,1) and hence lim (g(x))"*" = 0. By Monotone Convergence,

n——+00

AG(E):)\(EmA):j 1dA = lim L A(1—(g(x))”+1)d/\(x).

EAA n—-+00
On the other hand, for any x € E n A, we have g(x) € [0, 1), and hence

[+ () + - + (g(0))" g(x) < 13(92) <+,

Monotone Convergence thus yields

2o(E) = lim jw [+ () + -+ (g(0)" g()du(x) = fw h(x)du(x) = jE h(x)du(x).

n—+00
where h : X — R (note h e L'(y)) is given by

im [1T+g(x)+---+(g(x))"]gx) xeA

h(x) = {n—>+® .
{0 xeB

Part IV. It remains to show uniqueness part of statement (b). Suppose h’ € L'(y) also satisfies
Ao(E) =J h'du, VEE€eF.
E
Note D := {x € X : h(x) > h’(x)} is measurable. For a contradiction, suppose p(D) > 0. Then,

0= 4u(D) = (D) = |

hdy — J hdy = f (h— h)dy > 0,
D D D

a contradiction. Hence, h € L'(u) is unique. The proof is complete.

O

Try to generalize to v « p, where v is finite but p is o-finite. Maybe even further to signed or complex

measures???
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B Hahn-Banach Theorem and Consequences

Definition B.1 (Closed Linear Subspace). A subset E of a linear space V over R is called a linear subspace if
M+ AheE, YA, AeR VA, HLeE.

A subset E of a normed linear space V is called closed if

lim f,eE, V{f,} € E strongly convergent in V.
n—+00

Definition B.2 (Sublinear Functional). On a vector space X, a sublinear functional is a function g : X — R
such that

(@) gix +y) < g(x) + q(y) for all x,y € X;
(b) g(ax) = aq(x) for all x € X and a € Rxo.

Note any norm is a sublinear functional. In fact, (a) is the Triangle Inequality, and (b) is Homogeneity for
nonnegative scalars. So a sublinear functional g falls short of being a norm in that g can take negative values,
need not satisfy Absolute Homogeneity (|ax| = |a|||x| for any @ € R and x € X) for negative scalars, and need
not separate points (x| = 0 if and only if x = 0).

Theorem B.3 (Hahn-Banach Theorem for Vector Spaces over R; [Con85] Theorem 6.2). Let X be a vector space
over R and q a sublinear functional on X. If M is a linear subspace of X and f : M — R is a linear functional
with f(x) < q(x) for all x € M, then there is a linear functional F : X — R such that F |y = f and F (x) < q(x)
for all x € X.

The substance of the theorem is not that the extension from M to X exists, but that there is an extension that

remains dominated by sublinear functional g. The proof relies on Zorn's Lemma{fl

Proof. Take x1 € X\M and define M := span{x;, M}. In order to extend f to M, we need to find an appropriate

value a1 € R for
f(X1) = 1.

Then, by linearity, we will have f(tx1 +y) = tf(x1) + f(y) = tag + f(y) for all tx; + y € span{x3, M}.

The restriction is domination by g. Finding such an appropriate o; reduces to meeting the following two
conditions.

(i) for t > 0, we need f(tx1 +y) < q(tx1 +y) = tqg(xq + t~'y) for all y € M, or equivalently,
T (a+y)=a +f(tTy) <qla+ty),  YyeM.
In other words, we need
o <qlxq+y)—1(y), VyeM.
(ii) for t < 0, the condition f(txy + y) < q(tx1 +y) = (=t)q(—x1 + (—t)~'y) for all y € M is equivalent to

1

(=) +y) = —ar + (=) 'y) < q(=x1 + (=) 'y),  VyeM.

In other words, we need
ar = f(y") —q(=x+y"), vy eM

Note that for any y’, y” € M, we have

Fly)+f(y") = +¢") < qly" +¢") <qla +y') + q(—=xi + y").
That s,
fly") —q(=x +4¢") < qla +y) = f(y), Yy, y"eM.

16Zorn’s Lemma: If every nonempty chain in a nonempty partially ordered set P has an upper bound in P, then P has at least one
maximal element.
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Therefore, there exists an o € R satisfying conditions (i) and (ii), and we have extended f to M.

The proof is completed by Zorn's Lemma. Define the set P to be the collection of all linear subspaces N with
M < N < X for which there exists a linear functional g : N — R with g|y = f and g(x) < g(x) for all x € N.
Note P 3 M is nonempty. Partially order P by inclusion <. Then, any nonempty chain {N¢}cec € P has an
upper bound N = |J Ne € P. Zorn's Lemma yields a maximal element Ny € P.

We show Ny = X. Suppose not. Then, there is some x, € X\Np so that Ny := span{x;, No} is a strictly larger
linear subspace than Np. Since we can extend g from Np to Ny as we did from M to M, it follows that N is
not a maximal element of P, a contradiction. We conclude Ny = X and complete the proof. O

An easy application of Hahn-Banach allows us to extend a bounded linear functional defined on a linear
subspace to the entire space, while preserving the operator norm.

Corollary B.4. Let (X, | -|) be a normed linear space over R, M a linear subspace, and f : M — R a bounded
linear functional. Then, there exists F € X’ such that F|y = f and |F| = |f|.

Proof. Define g : X — R by
q(x) = [fllix]. vxeR.

Then, g is a sublinear functional on X with f(x) < g(x) for all x € M. Hahn-Banach Theorem extends f to
a linear functional F : X — R such that Flyy = f and F(x) < q(x) = |f||x]| for all x € X. This implies
[F|| < |f]l. On the other hand, ||F| = |F|uml = |[f]l. So we conclude |F| = |f]. O

This type of norm-preserving extension of bounded linear functionals allows us to explore a certain symmetry
in the norms of X and its dual X".

Corollary B.5. If X is a normed linear space and x € X, then
X[ = sup{[f ()] - fe X[ F] < 1}
Moreover, this supremum is attained.

Proof. Let a = sup{|f(x)| : f € X', |f| < 1}. If f e X" with || <1, then [f(x)| < |flllx] < |x|l. This shows
a < |x|. On the other hand, let
M = {Bx:xeR},
and define
g:M—->R:  g(Bx) =B|x|.
Note g € M’ and |g|| = 1. By the preceding corollary, we can extend g to f € X with f(x) = g(x) = |x].

while preserving the norm |[f| = |g| = 1. By definition of a as supremum, we have a > |f(x)| = ||x|, and
evidently this supremum is attained by f. O

Proposition B.6 (Geometric Hahn-Banach Theorem; [Con85] Corollary 6.8). Let X be a normed linear space
over R, M a closed linear subspace, and xo € X\M with d = dist(xg, M). Then, there exists f € X' with
[l = 1/d such that (i) f(x0) = 1 and (ii) f(x) = 0 for all x e M.

Remark B.7. Since M is a closed linear subspace, xo ¢ X\M implies d = dist(xo, M) > 0. Indeed, suppose the
contrary, so 0 = dist(xg, M) = infyepns [xo+yl|. Then, there is a sequence {y,} = M such that lan:OO [xo+yn| =
0. This means lim y, = —xp and this limit belongs to M because M is closed. But M is also a linear space,

n——+0o0

so we conclude xp € M, contradicting xp € X\M.

The Geometric Hahn-Banach Theorem is interpreted to mean that a closed linear subspace M can be separated
from any outside vector xp € X\M, not only by a positive distance, but also by a vector (bounded linear functional
f € X’} so that f is orthogonal to M but not orthogonal to xo.

Proof of Proposition Let Q : X — X/M be the quotient map. By definition,

[xo + M| = inf{xo + y : y € M} = dist(xo, M) = d > 0.
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By preceding corollary, there is a bounded linear functional g € (X/M)’ such that g(xo+ M) = d and |g|| = 1.
Define
f-X—->R, xm—d'goQ(x).

Clearly, f is continuous, f(x) = 0 for all x e M, and f(x) = 1.
To verify |[f| = d~". Note on the one hand,

10 =d'go QM) < d7'gl|Q()| < d7'Ix].  V¥xeX,

and hence ||f|| < d=". On the other hand, since |g|| = 1, by the definition of operator norm and continuity of
g, there is a sequence {x,} € X such that |g(x, + M)| = 1 and |x, + M| < 1 for all n. Let {y,} € M be a
sequence such that |[x, + y,| < 1. Then,

(%0 + yn)| = [d7 g (xp + M)| — d7",

and hence || = d=". We conclude || = d~", as required. This completes the proof of Proposition O
Proposition B.8 (Bounded Linear Functionals Separate Points). If x,y are two distinct points in a normed
linear space X, then there is some bounded linear functional f € X* for which f(x) # f(y).

Proof. At least one of x, y must be nonzero, so assume x # 0 without loss of generality. Take M = span(x).

If y € M, then define bounded linear functional f on M by setting f(x) = 1 and extend f to X by Hahn-Banach;
since y # x, it follows that y = ax for some o # 1 and hence f(y) = f(ax) = af(x) = a # 1 = f(x), as
required.

Now suppose y ¢ M. So d = dist(y, M) > 0 because M is closed for being a 1-dimensional linear subspace.
Then, Proposition yields some f € X* for which f(y) =1, f(x) = 0. This completes the proof. O
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C Open Mapping Theorem

Theorem C.1 (Open Mapping Theorem; [Con85] Theorem 12.1). If X and Y are Banach spaces and A: X — Y
is a continuous linear surjection, then A(G) is open in Y whenever G is open in X.

Proof For r >0, xe X and y e Y, let Bx(x,r) .= {x € X :||x' — x| < r} denote the open ball in X centered
at x of radius r and By(y,r) :=={y" € Y : |y" — y| < r} denote the open ball in Y centered at y of radius r.
When x = 0 (or y = 0 respectively), we write simply Bx(r) = Bx(0, r) (and By(r) = By(0, r)).

Claim 1. O € int cl A(B(r)) for any r > 0.
Proof fo Claim 1. Since | J{Z, Bx(kr/2) = X and A s surjective, we have

(e 0] [e0]

Y = L A(Bx(kr/2)) U A(Bx(r/2)).

k=1 k=1

Baire Category Theorem 1|E Every complete metric space X is a Baire space, i.e., any countable inter-
section (),cy U, of open dense sets U, < X is dense in X.

Immediately, Banach spaces X and Y are Baire spaces. For a contradiction, suppose each closed set
cl A(Bx(kr/2)), k = 1, has empty interior. Then each complement Y\cl A(Bx(kr/2)), k =1, is open and dense
in Y. It follows that the countable intersection

ﬂ Y\cl A(Bx(kr/2)) = Y\ U cl A(Bx(kr/2)) =
k=1 k=1

is dense in Y, a contradiction. We thus conclude that there is some k > 1 for which k - cl A(Bx(r/2)) =
cl A(Bx(kr/2)) has nonempty interior. Hence, V := int cl A(Bx(r/2)) #

Let yo € V and s > 0 be such that By(yg,s) € V < cl A(Bx(r/2)). Let y € By(s) so that yo + y €
By(yo,s) < cl A(Bx(r/2)). Now that both points yo, yo + y € cl A(Bx(r/2)), there are two sequences {x,},
and {z,}, in Bx(r/2) such that A(x,) — yo and A(z,) — yo + y. We thus obtain {z, — x,}, < Bx(r) with
A(z, — x,) — y € By(s). Since y € By(s) was arbitrary, we have shown that By(s) < cl A(Bx(r)). From
0 € int By(s), we conclude 0 € int cl A(Bx(r)), as claimed. O

Claim 2. cl A(Bx(r/2)) < A(Bx(r)) for any r > 0.
Proof of Claim 2. Fix yq € cl A(Bx(r/2)). Since 0 € int cl A(Bx(r/4)) according to Claim 1, it follows that

y1 € [yr = LABx(r/4)] " A(Bx(r/2)) # &
Let x; € Bx(r/2) such that A(x1) € [y1 — cl A(Bx(r/4))]. Then, A(x1) = y1 — y> for some y, € cl A(Bx(r/4)).

Continuing this way, we obtain two sequences

{xa}n € Bx(r/2") and  {yn}, = L A(Bx(r/2"))
such that
Alxn) = Yn = Yn+1-
Since x, € Bx(r/2"), it follows that |x,|| < r/2", hence the sequence {3V, x,}x S X is Cauchy, and therefore

the limit
o0
= Z x, € X
n=1

exists with x| < r.

Also,

n n

Z Alxe) = Z Yk = Yk+1 = Y1 — Yn41.

k=1 k=1

" For a great discussion of the Baire Category Theorem and the (strong) Open Mapping and Closed Graph Theorems as its consequences,
see https://www.ucl.ac.uk/ ucahad0/3103_handout_7.pdf
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But y, € cl A(Bx(r/2")) implies that |y,| < ||A|lr/2" and hence y, — 0. It follows from the continuity of A
and x € Bx(r) that

0

e¢]
y1 = D AM) = A x) = Alx) € A(Bx(r)).
k=1 k=1
Since y1 € cl A(Bx(r/2)) was arbitrary, the claim is proven. O

We now return to the proof of the Open Mapping Theorem. Note Claims 1 and 2 together imply that
Oeint A(Bx(r)), ¥r>0.

Take any open set G < X. For each x € G, let ry > 0 be such that Bx(x, ry) € G. Since 0 € int A(Bx(ry)), it
follows that

A(x) = A(x) + 0 € A(x) + int A(Bx(ry)) = int[A(x) + A(Bx(ry))] = int A(x + Bx(ry)) = int A(Bx(x, ry)),

and hence there is some s, > 0 for which By (A(x), sy) € A(Bx(x, ry)). We then have

| Br(A(). ) = [ JABx(x, r)) = Al Bx(x. ) = A(G) = | Br(A(x). 5).

xeG xeG xeG xeG

This shows A(G) = [, By (A(x), sx) is open and completes the proof of the Open Mapping Theorem. O

Corollary C.2 (Inverse Mapping Theorem; [Con85] Theorem 12.5). If X and Y are Banach spaces and A= X — Y
is a bounded linear bijection, then its inverse A= s also bounded.
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