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1 About the group

This group is open to anyone who wants to start learning or discussing math on Saturday
mornings. Students include high school, undergraduate or graduate students. Every week,
that week’s volunteer student explains the selected topic and opens a discussion. The course
is usually followed by a USP professor and the professor adds his own comments when
necessary, but the goal is for volunteer students to work autonomously.

2 About the report

We decided to write this report for newcomers to follow the former discussions and to keep
track of our progress. If there is something which is not clear, please contact us. There are
some volunteers that can help in person.

3 To read

1.) Principles of Mathematical Analysis, Walter Rudin [1],
2.) Visual Complex Analysis, Tristan Needham [2].
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4 2024 Group Report

4.1 Week 1

Discussion: There does not exist p, q ∈ N such that
√
2 = p

q
. (Rudin: Proof by contradic-

tion).
Theorem 4.1. Let k, n ∈ N such that k, n ≥ 2. Then, either k

√
n ∈ N or k

√
n is irrational.

(Proved using the rational root theorem.)
Theorem 4.2. Let r, s ∈ Q,r ̸= s . Then, there is an irrational number between r, s.

4.2 Week 2

Discussion: Ordered Sets.

Definition of supremum and infimum of a set. Least-upper-bound property.

4.3 Week 3

Discussion: Fields.
Definition 4.3. A field is a set F with two operations, multiplications and addition, which
satisfy field axioms.

Discussion: Field axioms for (M):multiplication, (A): addition, (D): distribution law.
Example 4.4. Is set Z of integers a field? Is set Q of rational numbers a field?

Discussion: Ordered field.

4.4 Holiday topics that we covered

Complex numbers, metric spaces, topological space, a neighborhood of a point p, limit point
of a set E.

4.5 Metric Spaces - Pages 30 and 31

When we work in the context of the real line, or even the real plane, it is natural to talk
about the distance between numbers and vectors. For instance, given two numbers a, b ∈ R,
the distance from a to b is given by

|b− a| = |a− b|,

also known as the modulus of the two numbers, which can be defined in two equivalente
ways1:

|x| =
√
x2, or|x| =

{
x, x ≥ 0
−x, x < 0.

.

When we study other sets, be them subsets of euclidean spaces or other kinds of sets, one
natural question is “Can we talk about distance between objects that are not numbers?”,
and the short answer is yes! The long answer requires a definition, some theorems, and
pretty much the remainder of chapter 2 from the book. To start the generalization, we begin
with the main definition.

Definition 4.1. Given a set X, a metric on X is a function d : X ×X → R satisfying
the three metric axioms for any two p, q in X (called points here):

a) d(p, q) > 0 if p ̸= q, and d(p, p) = 0;

1Proving that they are equivalent makes for a nice little exercise.
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b) d(p, q) = d(q, p);

c) d(p, r) ≤ d(p, q) + d(q, r), (Triangular Inequality).

The value of d(p, q) is called the distance between p and q.

For instance, let’s check these properties for two metrics
Example 4.5 (The Modulus of a Real Number). Given real numbers x, y, z, define d :
R× R → R by

d(x, y) = |x− y|.

a) Since the modulus is, by definition, always positive, all that remains is to check if
d(x, x) = 0. In fact,

d(x, x) = |x− x| = |0| = 0.

b) To show that d(x, y) = d(y, x), we must open up the two moduli and compare them.
We have

d(x, y) = |x− y| =
{

x− y, x− y ≥ 0
y − x, x− y < 0

=

{
x− y, x ≥ y
y − x, x < y.

.

On the other hand,

d(y, x) =

{
y − x, y − x ≥ 0
x− y, y − x < 0

=

{
y − x, y ≥ x
x− y, y < x.

Looking at the two of them, it seems that they do in fact coincide, except when for the
condition y=x - in which case both are 0 by the first item, hence all is well.

c) As for the triangular inequality, it is a matter of opening up the moduli of |x−z|, |x−y|,
and |y − z| and checking/comparing individually for each case.

Example 4.6. For this next example, we’ll define a metric that is available for absolutely
any non-empty set, which is why it is known as the discrete metric. It works as coun-
terexamples of a lot of things, and is an overall really nice example.

Given a set X ̸= ∅, let d0 : X ×X → R be defined as

d(p, q) =

{
1, p ̸= q
0, p = q.

We’ll show that this is in fact a metric, but as a brief comment before, we’ve started discussing
metrics as a way of generalizing the notion of measurement of a distance - thus, a very natural
question is “what does the discrete metric even measures?”. The answer is that it is telling
us a very basic answer, i.e. if two elements are equal or not.

Now to the proof, given p, q, r elements of X,

a) It follows that d0(p, q) = 1 > 0 if they are different, and, by definition, d0(p, q) = 0 if
p=q.

b) When p and q are different, we have d0(p, q) = 1 and d0(q, p) = 1, hence d0(p, q) =
d0(q, p). The case when they coincide follows readily, since everything will zero-out.

c) If every point is the same (p=q=r), then 0 = 0 + 0 proves one case of the triangular
inequality. If say p=q and q ̸= r, then

d0(p, r) = 0 + d0(q, r) = d0(p, q) + d0(q, r),

and the same holds by analogy when q = r and p ̸= q. Finally, if p ̸= q, q ̸= r, and
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p ̸= r, then all the distances will be one, hence

1 = d0(p, r) ≤ 2 = 1 + 1 = d0(p, q) + d0(q, r).

Therefore, d0 is in fact a metric defined on the arbitrary non-empty set X.

Before delving deeper in the world of arbitrary metric spaces, it is important to give a few
other definitions for Euclidean spaces (Rn)

Definition 4.2. Given two real numbers a, b such that a < b, and a vector x = (x1, x2, . . . , xk) ∈
Rk, where xi are real numbers for each 1 ≤ i ≤ k, we say that

1) the set (a, b) = {x ∈ R : a < x < b} is called a segment of length b-a;

2) an interval of legth b-a is the set [a, b] = {x ∈ R : a ≤ x ≤ b}

3) a k-cell is the set of all points is Rk whose coordinates are within the values ai and bi,
where ai < bi for all i = 1, 2, . . . , k, i.e., {x ∈ Rk : ai ≤ xi ≤ bi∀1 ≤ i ≤ k}

With this definition, an interval is a 1-cell, a rectangle is a 2-cell, and so on.

Using the definition of a metric, one defines a few basic structures on a space. Most of them
will be done on the next class, but we start with what is the general version of an interval
and a segment outside the Euclidean set-up.

Definition 4.3. Let X be a metric space endowed with the metric d. If x ∈ X and r is a
positive number, the open ball B with center at x and radius r is defined to be the set
of all points whose distance to x is less than r. Mathematically, it is the set

Br(x) = {y ∈ X : d(x, y) < r}.

We also define the closed ball with center at x and radius r by including the points
whose distance to x is exactly r,

Br(x) = {y ∈ X : d(x, y) ≤ r},

and the circumference/boundary of a ball (it works both for open and closed balls) as the
set of points at a distance of exactly r from the center;

∂Br(x) = {y ∈ X : d(x, y) = r}.

Balls in euclidean spaces, either closed or open, have the very nice property that you can
take any two points inside the set, connect them by a line segment and that segment will be
entirely contained within the ball. Such a property is known as convexity, formally defined
by

Definition 4.4. A subset E ⊆ Rk is called convex if

λx+ (1− λ)y ∈ E, 0 < λ < 1

whenever x and y are in E.
Example 4.7 (Proof of Convexity of Balls). In this example, we prove the claim made
above that balls are convex sets of euclidean spaces. To prove that, let x, y, z ∈ Rk, r > 0,
0 < λ < 1, and y, z ∈ Br(x). Since y and z are in the ball,

|y − x| < r & |z − x| < r,

from which we want to prove that λy + (1 − λ)z ∈ Br(x) - in other words, our goal is to
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prove that
|λy + (1− λ)z − x| < r.

As a matter of facts, we have

|λy + (1− λ)z − x| = |λy + (1− λ)z + λx− λx︸ ︷︷ ︸
=0

−x| = |λ(y − x) + (1− λ)(z − x)|

≤ λ|y − x|+ (1− λ)|z − x|
< λr + (1− λ)r

= λr − λr + r = r.

Test Your Knowledge: Prove that closed balls and k-cells are convex sets.

4.6 Plan for the next lectures

03 August 2024 (For holiday group): Finite, Countable, Uncountable Sets

After holiday, we will study ”Real Field” and finish Chapter 1.
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