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Several services, both personal and 
corporate, are currently available in 
the Internet. 

Some Facts 

Many of these services can be accessed 
from mobile devices, such as tablets and 
smartphones. 

A recent study [1] showed that  
worldwide smartphone sales reached 
the sum of 225 million units just in the 
second quarter of 2013 

Update: more than 300 million in the second quarter of 2014! 
(http://www.idc.com/getdoc.jsp?containerId=prUS25037214) 



7 

Several services, both personal and 
corporate, are currently available in 
the Internet. 

Some Facts 

Many of these services can be accessed 
from mobile devices, such as tablets and 
smartphones. 

A recent study [1] showed that  
worldwide smartphone sales reached 
the sum of 225 million units just in the 
second quarter of 2013 

However, does commonly used 
authentication mechanisms provide enough 
security to them? 
 
Moreover, does people use these 
authentication mechanisms? 



8 

Several services, both personal and 
corporate, are currently available in 
the Internet. 

Some Facts 

Many of these services can be accessed 
from mobile devices, such as tablets and 
smartphones. 

A recent study [1] showed that  
worldwide smartphone sales reached 
the sum of 225 million units just in the 
second quarter of 2013 

A study on security of mobile devices [2] showed a worrying 
number: only 13% of the participants used PIN or visual code.  



9 

Several services, both personal and 
corporate, are currently available in 
the Internet. 

Some Facts 

Many of these services can be accessed 
from mobile devices, such as tablets and 
smartphones. 

A recent study [1] showed that  
worldwide smartphone sales reached 
the sum of 225 million units just in the 
second quarter of 2013 

The main reason given was that, without authentication, it is 
faster to use the device. 

A study on security of mobile devices [2] showed a worrying 
number: only 13% of the participants used PIN or visual code.  
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This technology can de used without 
interrupting user activities. 

Related biometric technology: gait 
biometrics (how users walk). 

Accelerometer 
Biometrics 

[3][4]. 

As it is behavioural technology, it may be subject to 
changes over time (concept drift). 

Question: does user behaviour changes over time on 
accelerometer biometrics using smartphone data? If so, how 
does it affect user recognition performance? 

•  This study investigates the user recognition performance over 
time using accelerometer data, considering a data stream context; 
 
•  Some mofications to a previous adaptive algorithm are also 
presented and evaluated. 
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Immune positive selection [Stibor and Timmis, 2005] 
(figure adapted from [Pisani, 2012]). 
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Self-Detector: Growing* 
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*uses ideas from [Kang et al. 2007] and 
[Giot et al. 2012b]. 

Stores new patterns (new 
detectors), but also keeps 

old patterns (detectors 
from the initial training). 



Self-Detector: Sliding* 
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*uses ideas from [Kang et al. 2007] and 
[Giot et al. 2012b]. 
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Just the first detector which recognizes 
the example is considered used. 

Any detector able to recognize 
the example is considered used. 

Adaptation is only performed if at 
least two detectors can recognize 
the example (higher confidence). 

Adaptation may occur if only one 
detector recognizes the example. 
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Experimental Setup 
 Datasets (only users with #examples >= 100, 

action=walking): 
 Activity Prediction (Dataset A): 36 users and a total of 10,591 

examples; 
 Actitracker (Dataset B): 131 users and a total of 29,190 

examples. 

 Evaluation: as shown in the figure below. 
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Classification algorithms: 
 
Self-Detector (static) 
Self-Detector: growing and sliding – ideas from [Kang et al., 2007] 
 
OCSVM [Schölkopf et al., 2001] 
OCSVM: growing and sliding – ideas from [Kang et al., 2007] 
 
Usage Control 
Usage Control S (more rigorous adaptive method) 

Experimental Setup 
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Experimental Results 

OCSVM:  
Similar performance 
with and without  
adaptation – high 
FRR;  

FRR and FAR 
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Experimental Results 

Usage Control: 
Low FRR and high FAR; 
Usage Control S: 
better balance 
between FAR and FRR. 

U. C. U. C. 

U. C. U. C. 

U. C. S U. C. S 

U. C. S U. C. S 

FRR and FAR 
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Experimental Results 

No evidence of behavioural 
change: even though, 
adaptive methods did not 
negatively impaired the 
performance. 
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Experimental Results 

Suggest behaviour change: adaptive 
methods improve performance. 
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Experimental Results 

Sharp behaviour change for user 3: 
adaptive methods improve performance, 
but Sliding and Usage Control were better 
than Usage Control S. 
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Conclusion 

 The analysis conducted in this study suggests 
that behaviour change occurs in accelerometer 
biometrics data, but not for all users. 

 Additionally, Usage Control S improved all rates 
over the non-adaptive Self-Detector, indicating 
that it is suitable for accelerometer biometrics. 
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