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Biometrics is considered a suitable option to 
improve current authentication systems. 

• everyone has the feature. Universality 

• it is possible to quantify the 
feature  quantitatively. 

Collectability 

• the feature allows to distinguish 
one person from another. 

Distinctiveness 

• feature should be invariant over 
time. 

Permanence 

Biometric features must meet some 
requirements [Jain et al., 2004]: 
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Biometrics is considered a suitable option to 
improve current authentication systems. 

• everyone has the feature. Universality 

• it is possible to quantify the 
feature  quantitatively. 

Collectability 

• the feature allows to distinguish 
one person from another. 

Distinctiveness 

• feature should be invariant over 
time. 

Permanence 

Biometric features must meet some 
requirements [Jain et al., 2004]: 

However, several studies have shown that it 
is not the case in practice: template ageing 
[Fenker et al., 2013]. 
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Adaptive Biometric Systems deal with template ageing 
by automatically adapting the user model over time. 

Several adaptive one-class algorithms have 
been used for this purpose. However, the 
performance is not usually consistent over 
different datasets; 
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Adaptive Biometric Systems deal with template ageing 
by automatically adapting the user model over time. 

Several adaptive one-class algorithms have 
been used for this purpose. However, the 
performance is not usually consistent over 
different datasets; 

Studies have shown that the combination of individual 
techniques in ensembles may lead to more accurate and 
stable decision models. 

This paper investigates the use of simple ensemble 
approaches for adaptive biometric systems: 
 - Proposal of a model to apply an ensemble of 
 adaptive algorithms for biometrics; 
 - Study of the behaviour of the ensemble with 
 adaptive algorithms in a data stream context. 
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- Stacking classifier requires both positive and negative examples 
- Biometric system has access to data from all enrolled users 
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Experimental Setup 

 Datasets: 

 GREYC: 100 users (2 months) 

 CMU: 51 users (8 sessions) 

 GREYC-Web: 35 users (> 1 year) 

 Extracted features: 

 

 

 Biometric Data Stream: 
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TimeKey 1 Key 2 Key 3

flight time flight time

Training Test/Adapt (positive and negative) 

30% negative 
70% positive 

Unsupervised phase Supervised phase 



Experimental Setup 

 Base Classification Algorithms (adaptive): 

 M2005 (I. Double Parallel) 

 Self-Detector (Sliding, Usage Control R, Usage 
Control S, Usage Control 2) 

 Stacking Classification Algorithms (static): 

 Multilayer Perceptron 

 Decision Tree (J48) 

 Random Forest 

 Naïve Bayes 
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Experimental Results 

Ensembles:  
Good FNMR 
performance over 
time (static 
algorithms tend to 
increase FNMR 
values) 
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Experimental Results 

Ensembles:  
FMR similar to other 
approaches 

FMR 
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Conclusion 

 This paper investigated the use of ensemble approaches 
for adaptive biometric systems (and how to implement 
them in this context).  

 Ensemble approaches resulted in consistent high predictive 
performance over all datasets; 

 Majority Voting (the simplest one) obtained accuracy better 
than baselines on two datasets; 

 Although ensemble implies in high use of computational 
resources, it may justify its use by the high predictive 
performance. 

 

 Future Work: 
 Change the way of selecting data for stacking classifier training; 
 Additional ensemble approaches. 
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